{"title":"从防御到疾病:免疫和阿尔茨海默病中的 IFITM3。","authors":"Zoe Kehs, Abigail C Cross, Yue-Ming Li","doi":"10.1016/j.neurot.2024.e00482","DOIUrl":null,"url":null,"abstract":"<p><p>Innate immunity protein interferon induced transmembrane protein 3 (IFITM3) is a transmembrane protein that has a wide array of functions, including in viral infections, Alzheimer's Disease (AD), and cancer. As an interferon stimulated gene (ISG), IFITM3's expression is upregulated by type-I, II, and III interferons. Moreover, the antiviral activity of IFITM3 is modulated by post-translational modifications. IFITM3 functions in innate immunity to disrupt viral fusion and entry to the plasma membrane as well as prevent viral escape from endosomes. As a γ-secretase modulatory protein, IFITM3 distinctly modulates the processing of amyloid precursor protein (APP) to generate amyloid beta peptides (Aβ) and Notch1 cleavages. Increased IFITM3 expression, which can result from aging, cytokine activation, inflammation, and infection, can lead to an upregulation of γ-secretase for Aβ production that causes a risk of AD. Therefore, the prevention of IFITM3 upregulation has potential in the development of novel therapies for the treatment of AD.</p>","PeriodicalId":19159,"journal":{"name":"Neurotherapeutics","volume":" ","pages":"e00482"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From defense to disease: IFITM3 in immunity and Alzheimer's disease.\",\"authors\":\"Zoe Kehs, Abigail C Cross, Yue-Ming Li\",\"doi\":\"10.1016/j.neurot.2024.e00482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Innate immunity protein interferon induced transmembrane protein 3 (IFITM3) is a transmembrane protein that has a wide array of functions, including in viral infections, Alzheimer's Disease (AD), and cancer. As an interferon stimulated gene (ISG), IFITM3's expression is upregulated by type-I, II, and III interferons. Moreover, the antiviral activity of IFITM3 is modulated by post-translational modifications. IFITM3 functions in innate immunity to disrupt viral fusion and entry to the plasma membrane as well as prevent viral escape from endosomes. As a γ-secretase modulatory protein, IFITM3 distinctly modulates the processing of amyloid precursor protein (APP) to generate amyloid beta peptides (Aβ) and Notch1 cleavages. Increased IFITM3 expression, which can result from aging, cytokine activation, inflammation, and infection, can lead to an upregulation of γ-secretase for Aβ production that causes a risk of AD. Therefore, the prevention of IFITM3 upregulation has potential in the development of novel therapies for the treatment of AD.</p>\",\"PeriodicalId\":19159,\"journal\":{\"name\":\"Neurotherapeutics\",\"volume\":\" \",\"pages\":\"e00482\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurotherapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neurot.2024.e00482\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neurot.2024.e00482","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
摘要
先天性免疫蛋白干扰素诱导跨膜蛋白 3(IFITM3)是一种跨膜蛋白,具有广泛的功能,包括病毒感染、阿尔茨海默病(AD)和癌症。作为一种干扰素刺激基因(ISG),IFITM3 的表达受 I 型、II 型和 III 型干扰素的调控。此外,IFITM3 的抗病毒活性还受到翻译后修饰的调节。IFITM3 在先天性免疫中的功能是破坏病毒融合和进入质膜,以及防止病毒从内体逃逸。作为一种γ-分泌酶调节蛋白,IFITM3能明显调节淀粉样前体蛋白(APP)的加工过程,生成淀粉样β肽(Aβ)和Notch1裂解。衰老、细胞因子活化、炎症和感染都可能导致 IFITM3 表达增加,从而导致γ-分泌酶上调以产生 Aβ,从而引发 AD 风险。因此,预防 IFITM3 上调有可能开发出治疗注意力缺失症的新型疗法。
From defense to disease: IFITM3 in immunity and Alzheimer's disease.
Innate immunity protein interferon induced transmembrane protein 3 (IFITM3) is a transmembrane protein that has a wide array of functions, including in viral infections, Alzheimer's Disease (AD), and cancer. As an interferon stimulated gene (ISG), IFITM3's expression is upregulated by type-I, II, and III interferons. Moreover, the antiviral activity of IFITM3 is modulated by post-translational modifications. IFITM3 functions in innate immunity to disrupt viral fusion and entry to the plasma membrane as well as prevent viral escape from endosomes. As a γ-secretase modulatory protein, IFITM3 distinctly modulates the processing of amyloid precursor protein (APP) to generate amyloid beta peptides (Aβ) and Notch1 cleavages. Increased IFITM3 expression, which can result from aging, cytokine activation, inflammation, and infection, can lead to an upregulation of γ-secretase for Aβ production that causes a risk of AD. Therefore, the prevention of IFITM3 upregulation has potential in the development of novel therapies for the treatment of AD.
期刊介绍:
Neurotherapeutics® is the journal of the American Society for Experimental Neurotherapeutics (ASENT). Each issue provides critical reviews of an important topic relating to the treatment of neurological disorders written by international authorities.
The Journal also publishes original research articles in translational neuroscience including descriptions of cutting edge therapies that cross disciplinary lines and represent important contributions to neurotherapeutics for medical practitioners and other researchers in the field.
Neurotherapeutics ® delivers a multidisciplinary perspective on the frontiers of translational neuroscience, provides perspectives on current research and practice, and covers social and ethical as well as scientific issues.