Antonia A Gazola, William Lautert-Dutra, Leticia Frohlich Archangelo, Rodolfo B Dos Reis, Jeremy A Squire
{"title":"精准肿瘤学平台:在癌症治疗中利用基因组数据库的实用策略。","authors":"Antonia A Gazola, William Lautert-Dutra, Leticia Frohlich Archangelo, Rodolfo B Dos Reis, Jeremy A Squire","doi":"10.1186/s13039-024-00698-w","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the expansion of molecularly targeted cancer therapies has significantly advanced precision oncology. Parallel developments in next-generation sequencing (NGS) technologies have also improved precision oncology applications, making genomic analysis of tumors more affordable and accessible. Targeted NGS panels now enable the rapid identification of diverse actionable mutations, requiring clinicians to efficiently assess the predictive value of cancer biomarkers for specific treatments. The urgency for timely and accurate decision-making in oncology emphasizes the importance of reliable precision oncology software. Online clinical decision-making tools and associated cancer databases have been designed by consolidating genomic data into standardized, accessible formats. These new platforms are highly integrated and crucial for identifying actionable somatic genomic biomarkers essential for tumor survival, determining corresponding drug targets, and selecting appropriate treatments based on the mutational profile of each patient's tumor. To help oncologists and translational cancer researchers unfamiliar with these tools, we review the utility, accuracy, and comprehensiveness of several commonly used precision medicine software options currently available. Our analysis categorized selected genomic databases based on their primary content, utility, and how well they provide practical guidance for interpreting somatic biomarker data. We identified several comprehensive, mostly open-access platforms that are easy to use for genetic biomarker searches, each with unique features and limitations. Among the precision oncology tools we evaluated, we found MyCancerGenome and OncoKB to be the first choice, offering comprehensive, accurate up-to-date information on the clinical significance of somatic mutations. To illustrate the application of these precision oncology tools in clinical settings, we evaluated three case studies to see how use of the platforms could have influenced treatment planning. Most of the precision oncology software evaluated could be easily streamlined into clinical workflows to provide updated information on approved drugs and clinical trials related the actionable mutations detected. Some platforms were very intuitive and easy to use, while others, often developed in smaller academic settings, were more difficult to navigate and may not be updated consistently. Future enhancements, incorporating artificial intelligence algorithms, are likely to improve integration of the platforms with diverse big data sources, enabling more accurate predictions of potential therapeutic responses.</p>","PeriodicalId":19099,"journal":{"name":"Molecular Cytogenetics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precision oncology platforms: practical strategies for genomic database utilization in cancer treatment.\",\"authors\":\"Antonia A Gazola, William Lautert-Dutra, Leticia Frohlich Archangelo, Rodolfo B Dos Reis, Jeremy A Squire\",\"doi\":\"10.1186/s13039-024-00698-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, the expansion of molecularly targeted cancer therapies has significantly advanced precision oncology. Parallel developments in next-generation sequencing (NGS) technologies have also improved precision oncology applications, making genomic analysis of tumors more affordable and accessible. Targeted NGS panels now enable the rapid identification of diverse actionable mutations, requiring clinicians to efficiently assess the predictive value of cancer biomarkers for specific treatments. The urgency for timely and accurate decision-making in oncology emphasizes the importance of reliable precision oncology software. Online clinical decision-making tools and associated cancer databases have been designed by consolidating genomic data into standardized, accessible formats. These new platforms are highly integrated and crucial for identifying actionable somatic genomic biomarkers essential for tumor survival, determining corresponding drug targets, and selecting appropriate treatments based on the mutational profile of each patient's tumor. To help oncologists and translational cancer researchers unfamiliar with these tools, we review the utility, accuracy, and comprehensiveness of several commonly used precision medicine software options currently available. Our analysis categorized selected genomic databases based on their primary content, utility, and how well they provide practical guidance for interpreting somatic biomarker data. We identified several comprehensive, mostly open-access platforms that are easy to use for genetic biomarker searches, each with unique features and limitations. Among the precision oncology tools we evaluated, we found MyCancerGenome and OncoKB to be the first choice, offering comprehensive, accurate up-to-date information on the clinical significance of somatic mutations. To illustrate the application of these precision oncology tools in clinical settings, we evaluated three case studies to see how use of the platforms could have influenced treatment planning. Most of the precision oncology software evaluated could be easily streamlined into clinical workflows to provide updated information on approved drugs and clinical trials related the actionable mutations detected. Some platforms were very intuitive and easy to use, while others, often developed in smaller academic settings, were more difficult to navigate and may not be updated consistently. Future enhancements, incorporating artificial intelligence algorithms, are likely to improve integration of the platforms with diverse big data sources, enabling more accurate predictions of potential therapeutic responses.</p>\",\"PeriodicalId\":19099,\"journal\":{\"name\":\"Molecular Cytogenetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cytogenetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13039-024-00698-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cytogenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13039-024-00698-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Precision oncology platforms: practical strategies for genomic database utilization in cancer treatment.
In recent years, the expansion of molecularly targeted cancer therapies has significantly advanced precision oncology. Parallel developments in next-generation sequencing (NGS) technologies have also improved precision oncology applications, making genomic analysis of tumors more affordable and accessible. Targeted NGS panels now enable the rapid identification of diverse actionable mutations, requiring clinicians to efficiently assess the predictive value of cancer biomarkers for specific treatments. The urgency for timely and accurate decision-making in oncology emphasizes the importance of reliable precision oncology software. Online clinical decision-making tools and associated cancer databases have been designed by consolidating genomic data into standardized, accessible formats. These new platforms are highly integrated and crucial for identifying actionable somatic genomic biomarkers essential for tumor survival, determining corresponding drug targets, and selecting appropriate treatments based on the mutational profile of each patient's tumor. To help oncologists and translational cancer researchers unfamiliar with these tools, we review the utility, accuracy, and comprehensiveness of several commonly used precision medicine software options currently available. Our analysis categorized selected genomic databases based on their primary content, utility, and how well they provide practical guidance for interpreting somatic biomarker data. We identified several comprehensive, mostly open-access platforms that are easy to use for genetic biomarker searches, each with unique features and limitations. Among the precision oncology tools we evaluated, we found MyCancerGenome and OncoKB to be the first choice, offering comprehensive, accurate up-to-date information on the clinical significance of somatic mutations. To illustrate the application of these precision oncology tools in clinical settings, we evaluated three case studies to see how use of the platforms could have influenced treatment planning. Most of the precision oncology software evaluated could be easily streamlined into clinical workflows to provide updated information on approved drugs and clinical trials related the actionable mutations detected. Some platforms were very intuitive and easy to use, while others, often developed in smaller academic settings, were more difficult to navigate and may not be updated consistently. Future enhancements, incorporating artificial intelligence algorithms, are likely to improve integration of the platforms with diverse big data sources, enabling more accurate predictions of potential therapeutic responses.
期刊介绍:
Molecular Cytogenetics encompasses all aspects of chromosome biology and the application of molecular cytogenetic techniques in all areas of biology and medicine, including structural and functional organization of the chromosome and nucleus, genome variation, expression and evolution, chromosome abnormalities and genomic variations in medical genetics and tumor genetics.
Molecular Cytogenetics primarily defines a large set of the techniques that operate either with the entire genome or with specific targeted DNA sequences. Topical areas include, but are not limited to:
-Structural and functional organization of chromosome and nucleus-
Genome variation, expression and evolution-
Animal and plant molecular cytogenetics and genomics-
Chromosome abnormalities and genomic variations in clinical genetics-
Applications in preimplantation, pre- and post-natal diagnosis-
Applications in the central nervous system, cancer and haematology research-
Previously unreported applications of molecular cytogenetic techniques-
Development of new techniques or significant enhancements to established techniques.
This journal is a source for numerous scientists all over the world, who wish to improve or introduce molecular cytogenetic techniques into their practice.