Charles Le Ciclé, Joëlle Cohen-Tannoudji, David L'Hôte
{"title":"了解发育中垂体的性腺细胞系分化的最新进展。","authors":"Charles Le Ciclé, Joëlle Cohen-Tannoudji, David L'Hôte","doi":"10.1159/000542513","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The pituitary gland is a vital endocrine organ regulating body homeostasis through six hormone-secreting cell types. Among these, pituitary gonadotrope cells are essential for reproductive function. Throughout pituitary ontogenesis, gonadotrope cells differentiate in a stepwise process, involving both morphogenic cues and transcription factors, which drives specification of progenitor cells into specialized endocrine cells. It is crucial to understand the mechanisms underlying gonadotrope differentiation, as developmental defects and abnormalities in this process can lead to many reproductive pathologies.</p><p><strong>Summary: </strong>This review offers a detailed overview of the latest advances in gonadotrope cell differentiation. We addressed this question with a specific focus on three important aspects of gonadotrope differentiation: the identification of the progenitor population giving rise to gonadotrope cells, the early mechanisms that initiate Nr5a1 expression and thus gonadotrope fate commitment and finally, the mechanisms driving the formation of physical and functional gonadotrope networks.</p><p><strong>Key messages: </strong>Overall, this review aims to provide new insights into three aspects of the gonadotrope differentiation process by reconsidering pioneering studies in the light of data gained from latest technological developments. Firstly, we re-investigated the long debated developmental trajectory of pituitary gonadotrope cells. Secondly, we reported new regulatory mechanisms of Nr5a1 expression, focusing on the involvement of ERα. Finally, we highlighted the molecular and cellular mechanisms driving gonadotrope network formation during embryogenesis, a process that seems essential for regulation of gonadotrope activity.</p>","PeriodicalId":19117,"journal":{"name":"Neuroendocrinology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in the understanding of gonadotrope lineage differentiation in the developing pituitary.\",\"authors\":\"Charles Le Ciclé, Joëlle Cohen-Tannoudji, David L'Hôte\",\"doi\":\"10.1159/000542513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The pituitary gland is a vital endocrine organ regulating body homeostasis through six hormone-secreting cell types. Among these, pituitary gonadotrope cells are essential for reproductive function. Throughout pituitary ontogenesis, gonadotrope cells differentiate in a stepwise process, involving both morphogenic cues and transcription factors, which drives specification of progenitor cells into specialized endocrine cells. It is crucial to understand the mechanisms underlying gonadotrope differentiation, as developmental defects and abnormalities in this process can lead to many reproductive pathologies.</p><p><strong>Summary: </strong>This review offers a detailed overview of the latest advances in gonadotrope cell differentiation. We addressed this question with a specific focus on three important aspects of gonadotrope differentiation: the identification of the progenitor population giving rise to gonadotrope cells, the early mechanisms that initiate Nr5a1 expression and thus gonadotrope fate commitment and finally, the mechanisms driving the formation of physical and functional gonadotrope networks.</p><p><strong>Key messages: </strong>Overall, this review aims to provide new insights into three aspects of the gonadotrope differentiation process by reconsidering pioneering studies in the light of data gained from latest technological developments. Firstly, we re-investigated the long debated developmental trajectory of pituitary gonadotrope cells. Secondly, we reported new regulatory mechanisms of Nr5a1 expression, focusing on the involvement of ERα. Finally, we highlighted the molecular and cellular mechanisms driving gonadotrope network formation during embryogenesis, a process that seems essential for regulation of gonadotrope activity.</p>\",\"PeriodicalId\":19117,\"journal\":{\"name\":\"Neuroendocrinology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroendocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000542513\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000542513","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Recent advances in the understanding of gonadotrope lineage differentiation in the developing pituitary.
Background: The pituitary gland is a vital endocrine organ regulating body homeostasis through six hormone-secreting cell types. Among these, pituitary gonadotrope cells are essential for reproductive function. Throughout pituitary ontogenesis, gonadotrope cells differentiate in a stepwise process, involving both morphogenic cues and transcription factors, which drives specification of progenitor cells into specialized endocrine cells. It is crucial to understand the mechanisms underlying gonadotrope differentiation, as developmental defects and abnormalities in this process can lead to many reproductive pathologies.
Summary: This review offers a detailed overview of the latest advances in gonadotrope cell differentiation. We addressed this question with a specific focus on three important aspects of gonadotrope differentiation: the identification of the progenitor population giving rise to gonadotrope cells, the early mechanisms that initiate Nr5a1 expression and thus gonadotrope fate commitment and finally, the mechanisms driving the formation of physical and functional gonadotrope networks.
Key messages: Overall, this review aims to provide new insights into three aspects of the gonadotrope differentiation process by reconsidering pioneering studies in the light of data gained from latest technological developments. Firstly, we re-investigated the long debated developmental trajectory of pituitary gonadotrope cells. Secondly, we reported new regulatory mechanisms of Nr5a1 expression, focusing on the involvement of ERα. Finally, we highlighted the molecular and cellular mechanisms driving gonadotrope network formation during embryogenesis, a process that seems essential for regulation of gonadotrope activity.
期刊介绍:
''Neuroendocrinology'' publishes papers reporting original research in basic and clinical neuroendocrinology. The journal explores the complex interactions between neuronal networks and endocrine glands (in some instances also immunecells) in both central and peripheral nervous systems. Original contributions cover all aspects of the field, from molecular and cellular neuroendocrinology, physiology, pharmacology, and the neuroanatomy of neuroendocrine systems to neuroendocrine correlates of behaviour, clinical neuroendocrinology and neuroendocrine cancers. Readers also benefit from reviews by noted experts, which highlight especially active areas of current research, and special focus editions of topical interest.