Daniel W Udwary, Drew T Doering, Bryce Foster, Tatyana Smirnova, Satria A Kautsar, Nigel J Mouncey
{"title":"次生代谢合作组织:次生代谢物生物合成基因簇数据库和网络讨论门户。","authors":"Daniel W Udwary, Drew T Doering, Bryce Foster, Tatyana Smirnova, Satria A Kautsar, Nigel J Mouncey","doi":"10.1093/nar/gkae1060","DOIUrl":null,"url":null,"abstract":"<p><p>Secondary metabolites are small molecules produced by all corners of life, often with specialized bioactive functions with clinical and environmental relevance. Secondary metabolite biosynthetic gene clusters (BGCs) can often be identified within DNA sequences by various sequence similarity tools, but determining the exact functions of genes in the pathway and predicting their chemical products can often only be done by careful, manual comparative analysis. To facilitate this, we report the first release of the secondary metabolism collaboratory (SMC), which aims to provide a comprehensive, tool-agnostic repository of BGC sequence data drawn from all publicly available and user-submitted bacterial and archaeal genome and contig sources. On the website, users are provided a searchable catalog of putative BGCs identified from each source, along with visualizations of gene and domain annotations derived from multiple sequence analysis tools. SMC's data is also available through publicly-accessible application programming interface (API) endpoints to facilitate programmatic access. Users are encouraged to share their findings (and search for others') through comment posts on BGC and source pages. At the time of writing, SMC is the largest repository of BGC information, holding 13.1M BGC regions from 1.3M source sequences and growing, and can be found at https://smc.jgi.doe.gov.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":null,"pages":null},"PeriodicalIF":16.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The secondary metabolism collaboratory: a database and web discussion portal for secondary metabolite biosynthetic gene clusters.\",\"authors\":\"Daniel W Udwary, Drew T Doering, Bryce Foster, Tatyana Smirnova, Satria A Kautsar, Nigel J Mouncey\",\"doi\":\"10.1093/nar/gkae1060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Secondary metabolites are small molecules produced by all corners of life, often with specialized bioactive functions with clinical and environmental relevance. Secondary metabolite biosynthetic gene clusters (BGCs) can often be identified within DNA sequences by various sequence similarity tools, but determining the exact functions of genes in the pathway and predicting their chemical products can often only be done by careful, manual comparative analysis. To facilitate this, we report the first release of the secondary metabolism collaboratory (SMC), which aims to provide a comprehensive, tool-agnostic repository of BGC sequence data drawn from all publicly available and user-submitted bacterial and archaeal genome and contig sources. On the website, users are provided a searchable catalog of putative BGCs identified from each source, along with visualizations of gene and domain annotations derived from multiple sequence analysis tools. SMC's data is also available through publicly-accessible application programming interface (API) endpoints to facilitate programmatic access. Users are encouraged to share their findings (and search for others') through comment posts on BGC and source pages. At the time of writing, SMC is the largest repository of BGC information, holding 13.1M BGC regions from 1.3M source sequences and growing, and can be found at https://smc.jgi.doe.gov.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkae1060\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1060","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The secondary metabolism collaboratory: a database and web discussion portal for secondary metabolite biosynthetic gene clusters.
Secondary metabolites are small molecules produced by all corners of life, often with specialized bioactive functions with clinical and environmental relevance. Secondary metabolite biosynthetic gene clusters (BGCs) can often be identified within DNA sequences by various sequence similarity tools, but determining the exact functions of genes in the pathway and predicting their chemical products can often only be done by careful, manual comparative analysis. To facilitate this, we report the first release of the secondary metabolism collaboratory (SMC), which aims to provide a comprehensive, tool-agnostic repository of BGC sequence data drawn from all publicly available and user-submitted bacterial and archaeal genome and contig sources. On the website, users are provided a searchable catalog of putative BGCs identified from each source, along with visualizations of gene and domain annotations derived from multiple sequence analysis tools. SMC's data is also available through publicly-accessible application programming interface (API) endpoints to facilitate programmatic access. Users are encouraged to share their findings (and search for others') through comment posts on BGC and source pages. At the time of writing, SMC is the largest repository of BGC information, holding 13.1M BGC regions from 1.3M source sequences and growing, and can be found at https://smc.jgi.doe.gov.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.