Nathan A Harper, Emily Y Hwang, Philip A Kocheril, Tze King Lam, Scott K Cushing
{"title":"用于片上疏散波传感的纳米光子铌酸锂波导的微妙之处。","authors":"Nathan A Harper, Emily Y Hwang, Philip A Kocheril, Tze King Lam, Scott K Cushing","doi":"10.1364/OE.529570","DOIUrl":null,"url":null,"abstract":"<p><p>Thin-film lithium niobate (TFLN) is promising for optical sensing due to its high nonlinearities, but its material properties present unique design challenges. We compare the sensing performance of the fundamental modes on a TFLN waveguide with a fluorescent dye sample. The TM mode has better overlap with the sample, with a 1.4 × greater sample absorption rate versus the TE mode. However, the TM mode also scatters at a 1.4 × greater rate, yielding less fluorescence overall. The TE mode is, therefore, more appropriate for sensing. Our findings have important implications for TFLN-based sensor designs.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 16","pages":"27931-27939"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subtleties of nanophotonic lithium niobate waveguides for on-chip evanescent wave sensing.\",\"authors\":\"Nathan A Harper, Emily Y Hwang, Philip A Kocheril, Tze King Lam, Scott K Cushing\",\"doi\":\"10.1364/OE.529570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thin-film lithium niobate (TFLN) is promising for optical sensing due to its high nonlinearities, but its material properties present unique design challenges. We compare the sensing performance of the fundamental modes on a TFLN waveguide with a fluorescent dye sample. The TM mode has better overlap with the sample, with a 1.4 × greater sample absorption rate versus the TE mode. However, the TM mode also scatters at a 1.4 × greater rate, yielding less fluorescence overall. The TE mode is, therefore, more appropriate for sensing. Our findings have important implications for TFLN-based sensor designs.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"32 16\",\"pages\":\"27931-27939\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.529570\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.529570","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
薄膜铌酸锂(TFLN)因其高非线性而有望用于光学传感,但其材料特性带来了独特的设计挑战。我们比较了 TFLN 波导上基本模式与荧光染料样品的传感性能。TM 模式与样品的重叠性更好,样品吸收率是 TE 模式的 1.4 倍。然而,TM 模式的散射率也比 TE 模式高 1.4 倍,因此总体上产生的荧光较少。因此,TE 模式更适合传感。我们的发现对基于 TFLN 的传感器设计具有重要意义。
Subtleties of nanophotonic lithium niobate waveguides for on-chip evanescent wave sensing.
Thin-film lithium niobate (TFLN) is promising for optical sensing due to its high nonlinearities, but its material properties present unique design challenges. We compare the sensing performance of the fundamental modes on a TFLN waveguide with a fluorescent dye sample. The TM mode has better overlap with the sample, with a 1.4 × greater sample absorption rate versus the TE mode. However, the TM mode also scatters at a 1.4 × greater rate, yielding less fluorescence overall. The TE mode is, therefore, more appropriate for sensing. Our findings have important implications for TFLN-based sensor designs.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.