Yashbir Singh, Colleen Farrelly, Quincy A Hathaway, Gunnar Carlsson
{"title":"通过持久图像可视化放射数据偏差。","authors":"Yashbir Singh, Colleen Farrelly, Quincy A Hathaway, Gunnar Carlsson","doi":"10.18632/oncotarget.28670","DOIUrl":null,"url":null,"abstract":"<p><p>Persistence images, derived from topological data analysis, emerge as a powerful tool for visualizing and mitigating biases in radiological data interpretation and AI model development. This technique transforms complex topological features into stable, interpretable representations, offering unique insights into medical imaging data structure. By providing intuitive visualizations, persistence images enable the identification of subtle structural differences and potential biases in data acquisition, interpretation, and AI model training. Persistence images can also facilitate stratified sampling, matching statistics, and noise filtration, enhancing the accuracy and equity of radiological analysis. Despite challenges in computational complexity and workflow integration, persistence images show promise in developing more accurate, equitable, and trustworthy AI systems in radiology, potentially improving patient outcomes and personalized healthcare delivery.</p>","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"787-789"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559657/pdf/","citationCount":"0","resultStr":"{\"title\":\"Visualizing radiological data bias through persistence images.\",\"authors\":\"Yashbir Singh, Colleen Farrelly, Quincy A Hathaway, Gunnar Carlsson\",\"doi\":\"10.18632/oncotarget.28670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Persistence images, derived from topological data analysis, emerge as a powerful tool for visualizing and mitigating biases in radiological data interpretation and AI model development. This technique transforms complex topological features into stable, interpretable representations, offering unique insights into medical imaging data structure. By providing intuitive visualizations, persistence images enable the identification of subtle structural differences and potential biases in data acquisition, interpretation, and AI model training. Persistence images can also facilitate stratified sampling, matching statistics, and noise filtration, enhancing the accuracy and equity of radiological analysis. Despite challenges in computational complexity and workflow integration, persistence images show promise in developing more accurate, equitable, and trustworthy AI systems in radiology, potentially improving patient outcomes and personalized healthcare delivery.</p>\",\"PeriodicalId\":19499,\"journal\":{\"name\":\"Oncotarget\",\"volume\":\"15 \",\"pages\":\"787-789\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559657/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncotarget\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18632/oncotarget.28670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncotarget","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncotarget.28670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Visualizing radiological data bias through persistence images.
Persistence images, derived from topological data analysis, emerge as a powerful tool for visualizing and mitigating biases in radiological data interpretation and AI model development. This technique transforms complex topological features into stable, interpretable representations, offering unique insights into medical imaging data structure. By providing intuitive visualizations, persistence images enable the identification of subtle structural differences and potential biases in data acquisition, interpretation, and AI model training. Persistence images can also facilitate stratified sampling, matching statistics, and noise filtration, enhancing the accuracy and equity of radiological analysis. Despite challenges in computational complexity and workflow integration, persistence images show promise in developing more accurate, equitable, and trustworthy AI systems in radiology, potentially improving patient outcomes and personalized healthcare delivery.