{"title":"利用深度学习实现液晶设备的复杂相位调制。","authors":"Qian Chen, Weiping Ding, Feng Jiang, Jiangang Lu","doi":"10.1364/OE.532208","DOIUrl":null,"url":null,"abstract":"<p><p>A deep learning-based phase modulation method for liquid crystal (LC) devices was demonstrated. For LC devices with a single-electrode structure, achieving complex phase distributions is highly challenging. Meanwhile, multi-electrode LC devices, as pixel resolution increases and electrode size decreases, encounter issues of cumbersome modulation steps and reduced modulation accuracy during the phase modulation process. This method uses the concept of field to modulate the phase of the LC device, providing an effective phase modulation scheme. By establishing a deep learning model, it maps the phase retardation distribution of LC devices onto the electric field distribution. This method effectively mitigates the phase modulation issues arising from the fringe field effect, enabling an accurate and precise phase modulation distribution.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 15","pages":"25883-25891"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex phase modulation of liquid crystal devices with deep learning.\",\"authors\":\"Qian Chen, Weiping Ding, Feng Jiang, Jiangang Lu\",\"doi\":\"10.1364/OE.532208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A deep learning-based phase modulation method for liquid crystal (LC) devices was demonstrated. For LC devices with a single-electrode structure, achieving complex phase distributions is highly challenging. Meanwhile, multi-electrode LC devices, as pixel resolution increases and electrode size decreases, encounter issues of cumbersome modulation steps and reduced modulation accuracy during the phase modulation process. This method uses the concept of field to modulate the phase of the LC device, providing an effective phase modulation scheme. By establishing a deep learning model, it maps the phase retardation distribution of LC devices onto the electric field distribution. This method effectively mitigates the phase modulation issues arising from the fringe field effect, enabling an accurate and precise phase modulation distribution.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"32 15\",\"pages\":\"25883-25891\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.532208\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.532208","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Complex phase modulation of liquid crystal devices with deep learning.
A deep learning-based phase modulation method for liquid crystal (LC) devices was demonstrated. For LC devices with a single-electrode structure, achieving complex phase distributions is highly challenging. Meanwhile, multi-electrode LC devices, as pixel resolution increases and electrode size decreases, encounter issues of cumbersome modulation steps and reduced modulation accuracy during the phase modulation process. This method uses the concept of field to modulate the phase of the LC device, providing an effective phase modulation scheme. By establishing a deep learning model, it maps the phase retardation distribution of LC devices onto the electric field distribution. This method effectively mitigates the phase modulation issues arising from the fringe field effect, enabling an accurate and precise phase modulation distribution.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.