估算摄入放射性核素体内分布的新工具。

IF 0.8 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Radiation protection dosimetry Pub Date : 2024-11-13 DOI:10.1093/rpd/ncae031
Jinghang Wang, Xin Lin, Bo Chen, Weihai Zhuo
{"title":"估算摄入放射性核素体内分布的新工具。","authors":"Jinghang Wang, Xin Lin, Bo Chen, Weihai Zhuo","doi":"10.1093/rpd/ncae031","DOIUrl":null,"url":null,"abstract":"<p><p>This study developed a more universal tool for estimating the in vivo distribution of intake radionuclides. The biokinetic models and transfer rates for intake radionuclides were cited from the publications of the International Commission on Radiological Protection (ICRP), and the models were transformed into a series of linear differential equations and numerically solved using the Scipy algorithm in Python. The user interfaces for model selection, data input and in vivo distribution calculations were designed using PyQt5. The calculation results of the new tool are completely consistent with those of the data viewer released by the ICRP and are also very similar to other reported values. The new tool allows users to select and change the biokinetic models and transfer rates and display the in vivo distribution of radionuclides in an image format. It is much more user friendly.</p>","PeriodicalId":20795,"journal":{"name":"Radiation protection dosimetry","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new tool for estimation of the in vivo distribution of intake radionuclides.\",\"authors\":\"Jinghang Wang, Xin Lin, Bo Chen, Weihai Zhuo\",\"doi\":\"10.1093/rpd/ncae031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study developed a more universal tool for estimating the in vivo distribution of intake radionuclides. The biokinetic models and transfer rates for intake radionuclides were cited from the publications of the International Commission on Radiological Protection (ICRP), and the models were transformed into a series of linear differential equations and numerically solved using the Scipy algorithm in Python. The user interfaces for model selection, data input and in vivo distribution calculations were designed using PyQt5. The calculation results of the new tool are completely consistent with those of the data viewer released by the ICRP and are also very similar to other reported values. The new tool allows users to select and change the biokinetic models and transfer rates and display the in vivo distribution of radionuclides in an image format. It is much more user friendly.</p>\",\"PeriodicalId\":20795,\"journal\":{\"name\":\"Radiation protection dosimetry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation protection dosimetry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/rpd/ncae031\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation protection dosimetry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/rpd/ncae031","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

这项研究开发了一种更通用的工具,用于估算摄入放射性核素的体内分布。摄入放射性核素的生物动力学模型和转移率引自国际辐射防护委员会(ICRP)的出版物,这些模型被转化为一系列线性微分方程,并使用 Python 中的 Scipy 算法进行数值求解。用于模型选择、数据输入和体内分布计算的用户界面是用 PyQt5 设计的。新工具的计算结果与国际放射防护委员会发布的数据查看器的结果完全一致,也与其他报告值非常相似。新工具允许用户选择和更改生物动力学模型和转移率,并以图像格式显示放射性核素的体内分布。它对用户更加友好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new tool for estimation of the in vivo distribution of intake radionuclides.

This study developed a more universal tool for estimating the in vivo distribution of intake radionuclides. The biokinetic models and transfer rates for intake radionuclides were cited from the publications of the International Commission on Radiological Protection (ICRP), and the models were transformed into a series of linear differential equations and numerically solved using the Scipy algorithm in Python. The user interfaces for model selection, data input and in vivo distribution calculations were designed using PyQt5. The calculation results of the new tool are completely consistent with those of the data viewer released by the ICRP and are also very similar to other reported values. The new tool allows users to select and change the biokinetic models and transfer rates and display the in vivo distribution of radionuclides in an image format. It is much more user friendly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiation protection dosimetry
Radiation protection dosimetry 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
1.40
自引率
10.00%
发文量
223
审稿时长
6-12 weeks
期刊介绍: Radiation Protection Dosimetry covers all aspects of personal and environmental dosimetry and monitoring, for both ionising and non-ionising radiations. This includes biological aspects, physical concepts, biophysical dosimetry, external and internal personal dosimetry and monitoring, environmental and workplace monitoring, accident dosimetry, and dosimetry related to the protection of patients. Particular emphasis is placed on papers covering the fundamentals of dosimetry; units, radiation quantities and conversion factors. Papers covering archaeological dating are included only if the fundamental measurement method or technique, such as thermoluminescence, has direct application to personal dosimetry measurements. Papers covering the dosimetric aspects of radon or other naturally occurring radioactive materials and low level radiation are included. Animal experiments and ecological sample measurements are not included unless there is a significant relevant content reason.
期刊最新文献
A new tool for estimation of the in vivo distribution of intake radionuclides. A summary of updated UNSCEAR evaluations on medical and occupational exposures to ionising radiation and call for participation in UNSCEAR Global Surveys on radiation exposure. A pilot study to directly estimate radiation-induced mutation in large Japanese field mouse duo sample, mother and offspring, excluding unknown father, using ddRAD sequencing. An efficient and simple method for enriching metaphase cells for dicentric chromosome assay. Absorption and translocation to fruit for cesium applied on apple tree leaf surface.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1