{"title":"显示拉力的一维 PT 对称光学系统的光诱导自组装。","authors":"Song Liu, Guangtao Cao, Liyong Cui","doi":"10.1364/OE.527307","DOIUrl":null,"url":null,"abstract":"<p><p>Light induced self-assembly's non-contact and non-invasive nature, along with its versatility and dynamic assembly capabilities, make it particularly well-suited for the self-organization of particles. Previous self-assembly configurations are either in a static equilibrium state or in a dynamic equilibrium state driven by a pushing force. In this study, we introduce a one-dimensional parity-time symmetric (PT-symmetric) multilayer optical system consisting of balanced gain and loss, enabling the generation of a total pulling force on the structure. By conducting molecular dynamics simulations, we achieve the self-organized structure exhibiting pulling force. Furthermore, by reversing the direction of the incident light, we realized pushing force induced binding. The stability of the bound structure is also analyzed using linear stability analysis. Additionally, the light induced self-assembly exhibiting pulling and pushing force is achieved in the one-dimensional multilayer system with unbalanced gain and loss. This work provides an additional degree of freedom in the self-organization of particles.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 15","pages":"25968-25980"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light induced self-assembly of one-dimensional PT-symmetric optical system exhibiting pulling force.\",\"authors\":\"Song Liu, Guangtao Cao, Liyong Cui\",\"doi\":\"10.1364/OE.527307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Light induced self-assembly's non-contact and non-invasive nature, along with its versatility and dynamic assembly capabilities, make it particularly well-suited for the self-organization of particles. Previous self-assembly configurations are either in a static equilibrium state or in a dynamic equilibrium state driven by a pushing force. In this study, we introduce a one-dimensional parity-time symmetric (PT-symmetric) multilayer optical system consisting of balanced gain and loss, enabling the generation of a total pulling force on the structure. By conducting molecular dynamics simulations, we achieve the self-organized structure exhibiting pulling force. Furthermore, by reversing the direction of the incident light, we realized pushing force induced binding. The stability of the bound structure is also analyzed using linear stability analysis. Additionally, the light induced self-assembly exhibiting pulling and pushing force is achieved in the one-dimensional multilayer system with unbalanced gain and loss. This work provides an additional degree of freedom in the self-organization of particles.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"32 15\",\"pages\":\"25968-25980\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.527307\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.527307","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Light induced self-assembly of one-dimensional PT-symmetric optical system exhibiting pulling force.
Light induced self-assembly's non-contact and non-invasive nature, along with its versatility and dynamic assembly capabilities, make it particularly well-suited for the self-organization of particles. Previous self-assembly configurations are either in a static equilibrium state or in a dynamic equilibrium state driven by a pushing force. In this study, we introduce a one-dimensional parity-time symmetric (PT-symmetric) multilayer optical system consisting of balanced gain and loss, enabling the generation of a total pulling force on the structure. By conducting molecular dynamics simulations, we achieve the self-organized structure exhibiting pulling force. Furthermore, by reversing the direction of the incident light, we realized pushing force induced binding. The stability of the bound structure is also analyzed using linear stability analysis. Additionally, the light induced self-assembly exhibiting pulling and pushing force is achieved in the one-dimensional multilayer system with unbalanced gain and loss. This work provides an additional degree of freedom in the self-organization of particles.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.