Hengzhen Cheng, Ting Liang, Wen Li, Weiyi Zhou, Caiyu Feng, Ziyang Wang, Bin Liu, Xinyue Wang, Yanbing Hou, Yan Zhang, Jingling Shen, Bo Zhang
{"title":"通过高稳定性 CsPbBr3 微晶体控制光学太赫兹超材料开关。","authors":"Hengzhen Cheng, Ting Liang, Wen Li, Weiyi Zhou, Caiyu Feng, Ziyang Wang, Bin Liu, Xinyue Wang, Yanbing Hou, Yan Zhang, Jingling Shen, Bo Zhang","doi":"10.1364/OE.527489","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic control of terahertz metamaterials using thin organic perovskite active layers has been extensively researched. However, the preparation of organic perovskite devices requires strict environmental conditions, and the devices are prone to hydrolysis in air, which reduces performance. Herein, we report an optical terahertz metamaterial switch controlled via hybridization with high-stability CsPbBr<sub>3</sub> microcrystals prepared through precipitation from a water-dimethylformamide (DMF) mixed-solution. Under light excitation, a modulation factor of 24% was achieved based on the photoelectric and photothermal effects of the CsPbBr<sub>3</sub> microcrystals. After exposure to air for four months, the modulation factor remained essentially unchanged, demonstrating the exceptional stability of the system generated. Following the integration of CsPbBr<sub>3</sub> microcrystals with the metamaterial, a frequency-shift of its dipole resonance and switching of Fano resonance was achieved, providing a novel approach to dynamic control of terahertz waves.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 15","pages":"26094-26106"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical terahertz metamaterial switch controlled via high-stability CsPbBr<sub>3</sub> microcrystals.\",\"authors\":\"Hengzhen Cheng, Ting Liang, Wen Li, Weiyi Zhou, Caiyu Feng, Ziyang Wang, Bin Liu, Xinyue Wang, Yanbing Hou, Yan Zhang, Jingling Shen, Bo Zhang\",\"doi\":\"10.1364/OE.527489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dynamic control of terahertz metamaterials using thin organic perovskite active layers has been extensively researched. However, the preparation of organic perovskite devices requires strict environmental conditions, and the devices are prone to hydrolysis in air, which reduces performance. Herein, we report an optical terahertz metamaterial switch controlled via hybridization with high-stability CsPbBr<sub>3</sub> microcrystals prepared through precipitation from a water-dimethylformamide (DMF) mixed-solution. Under light excitation, a modulation factor of 24% was achieved based on the photoelectric and photothermal effects of the CsPbBr<sub>3</sub> microcrystals. After exposure to air for four months, the modulation factor remained essentially unchanged, demonstrating the exceptional stability of the system generated. Following the integration of CsPbBr<sub>3</sub> microcrystals with the metamaterial, a frequency-shift of its dipole resonance and switching of Fano resonance was achieved, providing a novel approach to dynamic control of terahertz waves.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"32 15\",\"pages\":\"26094-26106\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.527489\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.527489","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Optical terahertz metamaterial switch controlled via high-stability CsPbBr3 microcrystals.
Dynamic control of terahertz metamaterials using thin organic perovskite active layers has been extensively researched. However, the preparation of organic perovskite devices requires strict environmental conditions, and the devices are prone to hydrolysis in air, which reduces performance. Herein, we report an optical terahertz metamaterial switch controlled via hybridization with high-stability CsPbBr3 microcrystals prepared through precipitation from a water-dimethylformamide (DMF) mixed-solution. Under light excitation, a modulation factor of 24% was achieved based on the photoelectric and photothermal effects of the CsPbBr3 microcrystals. After exposure to air for four months, the modulation factor remained essentially unchanged, demonstrating the exceptional stability of the system generated. Following the integration of CsPbBr3 microcrystals with the metamaterial, a frequency-shift of its dipole resonance and switching of Fano resonance was achieved, providing a novel approach to dynamic control of terahertz waves.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.