{"title":"基于衍射神经网络的光电非线性 Softmax 算子。","authors":"Ziyu Zhan, Hao Wang, Qiang Liu, Xing Fu","doi":"10.1364/OE.527843","DOIUrl":null,"url":null,"abstract":"<p><p>Softmax, a pervasive nonlinear operation, plays a pivotal role in numerous statistics and deep learning (DL) models such as ChatGPT. To compute it is expensive especially for at-scale models. Several software and hardware speed-up strategies are proposed but still suffer from low efficiency, poor scalability. Here we propose a photonic-computing solution including massive programmable neurons that is capable to execute such operation in an accurate, computation-efficient, robust and scalable manner. Experimental results show our diffraction-based computing system exhibits salient generalization ability in diverse artificial and real-world tasks (mean square error <10<sup>-5</sup>). We further analyze its performances against several realistic restricted factors. Such flexible system not only contributes to optimizing Softmax operation mechanism but may provide an inspiration of manufacturing a plug-and-play module for general optoelectronic accelerators.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 15","pages":"26458-26469"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optoelectronic nonlinear Softmax operator based on diffractive neural networks.\",\"authors\":\"Ziyu Zhan, Hao Wang, Qiang Liu, Xing Fu\",\"doi\":\"10.1364/OE.527843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Softmax, a pervasive nonlinear operation, plays a pivotal role in numerous statistics and deep learning (DL) models such as ChatGPT. To compute it is expensive especially for at-scale models. Several software and hardware speed-up strategies are proposed but still suffer from low efficiency, poor scalability. Here we propose a photonic-computing solution including massive programmable neurons that is capable to execute such operation in an accurate, computation-efficient, robust and scalable manner. Experimental results show our diffraction-based computing system exhibits salient generalization ability in diverse artificial and real-world tasks (mean square error <10<sup>-5</sup>). We further analyze its performances against several realistic restricted factors. Such flexible system not only contributes to optimizing Softmax operation mechanism but may provide an inspiration of manufacturing a plug-and-play module for general optoelectronic accelerators.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"32 15\",\"pages\":\"26458-26469\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.527843\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.527843","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Optoelectronic nonlinear Softmax operator based on diffractive neural networks.
Softmax, a pervasive nonlinear operation, plays a pivotal role in numerous statistics and deep learning (DL) models such as ChatGPT. To compute it is expensive especially for at-scale models. Several software and hardware speed-up strategies are proposed but still suffer from low efficiency, poor scalability. Here we propose a photonic-computing solution including massive programmable neurons that is capable to execute such operation in an accurate, computation-efficient, robust and scalable manner. Experimental results show our diffraction-based computing system exhibits salient generalization ability in diverse artificial and real-world tasks (mean square error <10-5). We further analyze its performances against several realistic restricted factors. Such flexible system not only contributes to optimizing Softmax operation mechanism but may provide an inspiration of manufacturing a plug-and-play module for general optoelectronic accelerators.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.