受激拉曼诱导的光束聚焦。

IF 3.2 2区 物理与天体物理 Q2 OPTICS Optics express Pub Date : 2024-07-15 DOI:10.1364/OE.523404
Minhaeng Cho
{"title":"受激拉曼诱导的光束聚焦。","authors":"Minhaeng Cho","doi":"10.1364/OE.523404","DOIUrl":null,"url":null,"abstract":"<p><p>Stimulated Raman scattering, employing a pump and a Stokes beam, exhibits itself through both the Raman loss observed in the pump beam and the Raman gain in the Stokes beam. This phenomenon finds application in spectroscopy for chemical analyses and microscopy for label-free bioimaging studies. Recent efforts have been made to implement super-resolution Raman microscopy using a doughnut-shaped pump, Stokes, or depletion beam. In this study, it is shown that the amplitude and phase of the pump or Stokes beam undergo significant modulation through the stimulated Raman process when they are configured as one of the higher-order Laguerre-Gauss modes, achieved using appropriate spiral phase plates or spatial light modulators. The resulting intensity distributions of the pump and Stokes beams are determined by a superposition of multiple Laguerre-Gauss modes that are coupled through nonlinear Raman gain and loss processes. Calculation results are used to elucidate the limitations associated with super-resolution coherent Raman imaging with a toroidal pump or Stokes beam. This stands in contrast with the stimulated emission depletion fluorescence microscopy technique, which has no fundamental limit in the spatial resolution enhancement.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 15","pages":"26537-26560"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stimulated Raman-induced beam focusing.\",\"authors\":\"Minhaeng Cho\",\"doi\":\"10.1364/OE.523404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stimulated Raman scattering, employing a pump and a Stokes beam, exhibits itself through both the Raman loss observed in the pump beam and the Raman gain in the Stokes beam. This phenomenon finds application in spectroscopy for chemical analyses and microscopy for label-free bioimaging studies. Recent efforts have been made to implement super-resolution Raman microscopy using a doughnut-shaped pump, Stokes, or depletion beam. In this study, it is shown that the amplitude and phase of the pump or Stokes beam undergo significant modulation through the stimulated Raman process when they are configured as one of the higher-order Laguerre-Gauss modes, achieved using appropriate spiral phase plates or spatial light modulators. The resulting intensity distributions of the pump and Stokes beams are determined by a superposition of multiple Laguerre-Gauss modes that are coupled through nonlinear Raman gain and loss processes. Calculation results are used to elucidate the limitations associated with super-resolution coherent Raman imaging with a toroidal pump or Stokes beam. This stands in contrast with the stimulated emission depletion fluorescence microscopy technique, which has no fundamental limit in the spatial resolution enhancement.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"32 15\",\"pages\":\"26537-26560\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.523404\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.523404","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

受激拉曼散射采用一束泵浦光束和一束斯托克斯光束,通过在泵浦光束中观察到的拉曼损耗和斯托克斯光束中的拉曼增益来显示其本身。这种现象可应用于光谱化学分析和显微镜无标记生物成像研究。最近,人们努力利用甜甜圈形的泵浦、斯托克斯或损耗光束来实现超分辨率拉曼显微镜。本研究表明,当使用适当的螺旋相位板或空间光调制器将泵浦或斯托克斯光束配置为高阶拉盖尔-高斯模式之一时,它们的振幅和相位会通过受激拉曼过程发生显著调制。由此产生的泵浦光束和斯托克斯光束的强度分布由多个拉盖尔-高斯模式的叠加决定,这些模式通过非线性拉曼增益和损耗过程耦合在一起。计算结果用于阐明使用环形泵浦或斯托克斯光束进行超分辨相干拉曼成像的局限性。这与受激发射耗损荧光显微镜技术形成鲜明对比,后者在空间分辨率增强方面没有基本限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stimulated Raman-induced beam focusing.

Stimulated Raman scattering, employing a pump and a Stokes beam, exhibits itself through both the Raman loss observed in the pump beam and the Raman gain in the Stokes beam. This phenomenon finds application in spectroscopy for chemical analyses and microscopy for label-free bioimaging studies. Recent efforts have been made to implement super-resolution Raman microscopy using a doughnut-shaped pump, Stokes, or depletion beam. In this study, it is shown that the amplitude and phase of the pump or Stokes beam undergo significant modulation through the stimulated Raman process when they are configured as one of the higher-order Laguerre-Gauss modes, achieved using appropriate spiral phase plates or spatial light modulators. The resulting intensity distributions of the pump and Stokes beams are determined by a superposition of multiple Laguerre-Gauss modes that are coupled through nonlinear Raman gain and loss processes. Calculation results are used to elucidate the limitations associated with super-resolution coherent Raman imaging with a toroidal pump or Stokes beam. This stands in contrast with the stimulated emission depletion fluorescence microscopy technique, which has no fundamental limit in the spatial resolution enhancement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
期刊最新文献
How many surfaces can you distinguish by color? Real environmental lighting increases discriminability of surface colors. Diffractive microoptics in porous silicon oxide by grayscale lithography Polarization-independent and high-efficiency 2D dielectric transmission grating under Littrow incidence Mid-infrared ultrafast soliton molecules from a few-cycle Cr:ZnS laser Low-complexity turbulence resilience enabled by a multi-mode bi-directional transceiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1