Ratsimandresy Holinirina Dina Miora, Erich Rohwer, Martin Kielhorn, Colin Sheppard, Gurthwin Bosman, Rainer Heintzmann
{"title":"计算点扩散函数:方法、陷阱和解决方案。","authors":"Ratsimandresy Holinirina Dina Miora, Erich Rohwer, Martin Kielhorn, Colin Sheppard, Gurthwin Bosman, Rainer Heintzmann","doi":"10.1364/OE.523532","DOIUrl":null,"url":null,"abstract":"<p><p>The knowledge of the exact structure of the optical system point spread function (PSF) enables a high-quality image reconstruction in fluorescence microscopy. Accurate PSF models account for the vector nature of light and the phase and amplitude modifications. Most existing real-space-based PSF models fall into a sampling pitfall near the center position, yielding to the violation of energy conservation. In this work, we present a novel, to the best of our knowledge, Fourier-based techniques for computing vector PSF and compare them to the state-of-the-art. Our methods are shown to satisfy the physical condition of the imaging process. They are reproducible, computationally efficient, easy to implement, and easy to modify to represent various imaging modalities.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 16","pages":"27278-27302"},"PeriodicalIF":3.2000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculating point spread functions: methods, pitfalls, and solutions.\",\"authors\":\"Ratsimandresy Holinirina Dina Miora, Erich Rohwer, Martin Kielhorn, Colin Sheppard, Gurthwin Bosman, Rainer Heintzmann\",\"doi\":\"10.1364/OE.523532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The knowledge of the exact structure of the optical system point spread function (PSF) enables a high-quality image reconstruction in fluorescence microscopy. Accurate PSF models account for the vector nature of light and the phase and amplitude modifications. Most existing real-space-based PSF models fall into a sampling pitfall near the center position, yielding to the violation of energy conservation. In this work, we present a novel, to the best of our knowledge, Fourier-based techniques for computing vector PSF and compare them to the state-of-the-art. Our methods are shown to satisfy the physical condition of the imaging process. They are reproducible, computationally efficient, easy to implement, and easy to modify to represent various imaging modalities.</p>\",\"PeriodicalId\":19691,\"journal\":{\"name\":\"Optics express\",\"volume\":\"32 16\",\"pages\":\"27278-27302\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OE.523532\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.523532","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Calculating point spread functions: methods, pitfalls, and solutions.
The knowledge of the exact structure of the optical system point spread function (PSF) enables a high-quality image reconstruction in fluorescence microscopy. Accurate PSF models account for the vector nature of light and the phase and amplitude modifications. Most existing real-space-based PSF models fall into a sampling pitfall near the center position, yielding to the violation of energy conservation. In this work, we present a novel, to the best of our knowledge, Fourier-based techniques for computing vector PSF and compare them to the state-of-the-art. Our methods are shown to satisfy the physical condition of the imaging process. They are reproducible, computationally efficient, easy to implement, and easy to modify to represent various imaging modalities.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.