Yong Xu, Yi-Ran Wang, Wen-Pan Peng, Hui-Min Bu, Yao Zhou, Qi Wu
{"title":"丹参酮 IIA 通过 MAPK 信号通路抑制肺泡上皮细胞的脓毒症,从而缓解肺纤维化。","authors":"Yong Xu, Yi-Ran Wang, Wen-Pan Peng, Hui-Min Bu, Yao Zhou, Qi Wu","doi":"10.1002/ptr.8372","DOIUrl":null,"url":null,"abstract":"<p><p>The current dearth of safe and efficacious pharmaceutical interventions for pulmonary fibrosis (PF) has prompted investigations into alternative treatments. This study aim to investigate the underlying mechanisms of Tanshinone IIA in the treatment of PF. PF was induced in a mouse model by intratracheal infusion of bleomycin (BLM), followed by gavage administration of varying concentrations of Tanshinone IIA. Lung tissue was obtained for pathological slides, proteomic and transcriptomic analyses. The target was predicted and analyzed using network pharmacology. Initially, an in vitro model in A549 cells was established by adding BLM, followed by treatment with varying concentrations of Tanshinone IIA. Subsequently, NAC and the ERK inhibitor, U0126, were individually introduced. Treatment with Tanshinone IIA in vivo decreased lung tissue lesions. Proteomic, transcriptomic, and network pharmacology analyses suggested that Tanshinone IIA may offer therapeutic benefits for PF by mitigating oxidative stress damage via the MAPK signaling pathway. In vitro studies demonstrated that BLM treatment in A549 cells induced exposure of the N-terminal end of the pyroptosis core protein GSDMD, and elevated oxidative stress levels in A549 cells, concomitant with the upregulation of P-ERK protein expression. Subsequent administration of Tanshinone IIA, NAC, and U0126 reduced the number of A549 cells undergoing pyroptosis, decreased oxidative stress levels, and decreased P-ERK protein expression. These findings suggested that Tanshinone IIA potentially delays the progression of PF. The mechanism of action involves the inhibition of oxidative stress and reduced epithelial cell pyroptosis via the MAPK-related pathway. The findings may provide a new reference for treatment of PF.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tanshinone IIA Alleviates Pulmonary Fibrosis by Inhibiting Pyroptosis of Alveolar Epithelial Cells Through the MAPK Signaling Pathway.\",\"authors\":\"Yong Xu, Yi-Ran Wang, Wen-Pan Peng, Hui-Min Bu, Yao Zhou, Qi Wu\",\"doi\":\"10.1002/ptr.8372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The current dearth of safe and efficacious pharmaceutical interventions for pulmonary fibrosis (PF) has prompted investigations into alternative treatments. This study aim to investigate the underlying mechanisms of Tanshinone IIA in the treatment of PF. PF was induced in a mouse model by intratracheal infusion of bleomycin (BLM), followed by gavage administration of varying concentrations of Tanshinone IIA. Lung tissue was obtained for pathological slides, proteomic and transcriptomic analyses. The target was predicted and analyzed using network pharmacology. Initially, an in vitro model in A549 cells was established by adding BLM, followed by treatment with varying concentrations of Tanshinone IIA. Subsequently, NAC and the ERK inhibitor, U0126, were individually introduced. Treatment with Tanshinone IIA in vivo decreased lung tissue lesions. Proteomic, transcriptomic, and network pharmacology analyses suggested that Tanshinone IIA may offer therapeutic benefits for PF by mitigating oxidative stress damage via the MAPK signaling pathway. In vitro studies demonstrated that BLM treatment in A549 cells induced exposure of the N-terminal end of the pyroptosis core protein GSDMD, and elevated oxidative stress levels in A549 cells, concomitant with the upregulation of P-ERK protein expression. Subsequent administration of Tanshinone IIA, NAC, and U0126 reduced the number of A549 cells undergoing pyroptosis, decreased oxidative stress levels, and decreased P-ERK protein expression. These findings suggested that Tanshinone IIA potentially delays the progression of PF. The mechanism of action involves the inhibition of oxidative stress and reduced epithelial cell pyroptosis via the MAPK-related pathway. The findings may provide a new reference for treatment of PF.</p>\",\"PeriodicalId\":20110,\"journal\":{\"name\":\"Phytotherapy Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytotherapy Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ptr.8372\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8372","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Tanshinone IIA Alleviates Pulmonary Fibrosis by Inhibiting Pyroptosis of Alveolar Epithelial Cells Through the MAPK Signaling Pathway.
The current dearth of safe and efficacious pharmaceutical interventions for pulmonary fibrosis (PF) has prompted investigations into alternative treatments. This study aim to investigate the underlying mechanisms of Tanshinone IIA in the treatment of PF. PF was induced in a mouse model by intratracheal infusion of bleomycin (BLM), followed by gavage administration of varying concentrations of Tanshinone IIA. Lung tissue was obtained for pathological slides, proteomic and transcriptomic analyses. The target was predicted and analyzed using network pharmacology. Initially, an in vitro model in A549 cells was established by adding BLM, followed by treatment with varying concentrations of Tanshinone IIA. Subsequently, NAC and the ERK inhibitor, U0126, were individually introduced. Treatment with Tanshinone IIA in vivo decreased lung tissue lesions. Proteomic, transcriptomic, and network pharmacology analyses suggested that Tanshinone IIA may offer therapeutic benefits for PF by mitigating oxidative stress damage via the MAPK signaling pathway. In vitro studies demonstrated that BLM treatment in A549 cells induced exposure of the N-terminal end of the pyroptosis core protein GSDMD, and elevated oxidative stress levels in A549 cells, concomitant with the upregulation of P-ERK protein expression. Subsequent administration of Tanshinone IIA, NAC, and U0126 reduced the number of A549 cells undergoing pyroptosis, decreased oxidative stress levels, and decreased P-ERK protein expression. These findings suggested that Tanshinone IIA potentially delays the progression of PF. The mechanism of action involves the inhibition of oxidative stress and reduced epithelial cell pyroptosis via the MAPK-related pathway. The findings may provide a new reference for treatment of PF.
期刊介绍:
Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field.
Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters.
By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.