{"title":"通过在磷脂复合物中加入天然生物增强剂提高福莫西汀的生物利用率","authors":"Arun Agarwal, Shailesh Dadge, Richa Garg, Rakesh Kumar Sharma, Divya Chauhan, Roshan Katekar, Shivam Rathaur, Kalyan Mitra, Jiaur R Gayen","doi":"10.1080/10837450.2024.2427838","DOIUrl":null,"url":null,"abstract":"<p><p>Formononetin (FNT) has limited application due to poor water solubility and substantial phase II metabolism. In the present study, we used phospholipid complex (PC) containing FNT and UDP-glucuronosyltransferase (UGT1A1) inhibitor piperine (PIP) to overcome FNT limitations. We characterized and compared both FNT-PC and FNT-PIP-PC complexes. Our data showed both groups improved FNT water solubility and oil-water partition coefficient. NMR, DSC, and SEM were performed to identify the interaction and the geometrical nature of complex. When compared, FNT-PIP-PC released more FNT in <i>in vitro</i> release and permeation through Caco-2 monolayer than FNT-PC and pure FNT. <i>In vitro</i> data was consistent with the <i>in vivo</i> pharmacokinetic profile that showed increased, C<sub>max</sub> and AUC<sub>(0-24)</sub> by 7.16 and 23.33-fold and 29.65 and 23.33-fold at 5 and 10 mg/kg in FNT-PIP-PC, compared to pure FNT. Additionally, co-treatment of PIP and FNT improved <i>in vitro</i> pharmacological action in dexamethasone-induced osteoporosis. Thus, our study showed addition of PIP in FNT-PC further increases FNT water solubility and protects it from phase II metabolism, leading to enhanced bioavailability with improved pharmacological activity.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1148-1161"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioavailability enhancement of formononetin by incorporation of natural bioenhancer in phospholipid complex.\",\"authors\":\"Arun Agarwal, Shailesh Dadge, Richa Garg, Rakesh Kumar Sharma, Divya Chauhan, Roshan Katekar, Shivam Rathaur, Kalyan Mitra, Jiaur R Gayen\",\"doi\":\"10.1080/10837450.2024.2427838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Formononetin (FNT) has limited application due to poor water solubility and substantial phase II metabolism. In the present study, we used phospholipid complex (PC) containing FNT and UDP-glucuronosyltransferase (UGT1A1) inhibitor piperine (PIP) to overcome FNT limitations. We characterized and compared both FNT-PC and FNT-PIP-PC complexes. Our data showed both groups improved FNT water solubility and oil-water partition coefficient. NMR, DSC, and SEM were performed to identify the interaction and the geometrical nature of complex. When compared, FNT-PIP-PC released more FNT in <i>in vitro</i> release and permeation through Caco-2 monolayer than FNT-PC and pure FNT. <i>In vitro</i> data was consistent with the <i>in vivo</i> pharmacokinetic profile that showed increased, C<sub>max</sub> and AUC<sub>(0-24)</sub> by 7.16 and 23.33-fold and 29.65 and 23.33-fold at 5 and 10 mg/kg in FNT-PIP-PC, compared to pure FNT. Additionally, co-treatment of PIP and FNT improved <i>in vitro</i> pharmacological action in dexamethasone-induced osteoporosis. Thus, our study showed addition of PIP in FNT-PC further increases FNT water solubility and protects it from phase II metabolism, leading to enhanced bioavailability with improved pharmacological activity.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"1148-1161\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2024.2427838\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2427838","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Bioavailability enhancement of formononetin by incorporation of natural bioenhancer in phospholipid complex.
Formononetin (FNT) has limited application due to poor water solubility and substantial phase II metabolism. In the present study, we used phospholipid complex (PC) containing FNT and UDP-glucuronosyltransferase (UGT1A1) inhibitor piperine (PIP) to overcome FNT limitations. We characterized and compared both FNT-PC and FNT-PIP-PC complexes. Our data showed both groups improved FNT water solubility and oil-water partition coefficient. NMR, DSC, and SEM were performed to identify the interaction and the geometrical nature of complex. When compared, FNT-PIP-PC released more FNT in in vitro release and permeation through Caco-2 monolayer than FNT-PC and pure FNT. In vitro data was consistent with the in vivo pharmacokinetic profile that showed increased, Cmax and AUC(0-24) by 7.16 and 23.33-fold and 29.65 and 23.33-fold at 5 and 10 mg/kg in FNT-PIP-PC, compared to pure FNT. Additionally, co-treatment of PIP and FNT improved in vitro pharmacological action in dexamethasone-induced osteoporosis. Thus, our study showed addition of PIP in FNT-PC further increases FNT water solubility and protects it from phase II metabolism, leading to enhanced bioavailability with improved pharmacological activity.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.