对比增强超声成像(CEUS)与超分辨率超声成像(SRU)在量化缺血血流再分布方面的比较:理论研究。

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2024-11-22 DOI:10.1088/1361-6560/ad9231
Lachlan J M B Arthur, Vasiliki Voulgaridou, Mairead B Butler, Georgios Papageorgiou, Weiping Lu, Steven R McDougall, Vassilis Sboros
{"title":"对比增强超声成像(CEUS)与超分辨率超声成像(SRU)在量化缺血血流再分布方面的比较:理论研究。","authors":"Lachlan J M B Arthur, Vasiliki Voulgaridou, Mairead B Butler, Georgios Papageorgiou, Weiping Lu, Steven R McDougall, Vassilis Sboros","doi":"10.1088/1361-6560/ad9231","DOIUrl":null,"url":null,"abstract":"<p><p>The study of microcirculation can reveal important information related to pathology. Focusing on alterations that are represented by an obstruction of blood flow in microcirculatory regions may provide an insight into vascular biomarkers. The current in silico study assesses the capability of contrast enhanced ultrasound (CEUS) and super-resolution ultrasound imaging (SRU) flow-quantification to study occlusive actions in a microvascular bed, particularly the ability to characterise known and model induced flow behaviours. The aim is to investigate theoretical limits with the use of CEUS and SRU in order to propose realistic biomarker targets relevant for clinical diagnosis. Results from CEUS flow parameters display limitations congruent with prior investigations. Conventional resolution limits lead to signals dominated by large vessels, making discrimination of microvasculature specific signals difficult. Additionally, some occlusions lead to weakened parametric correlation against flow rate in the remainder of the network. Loss of correlation is dependent on the degree to which flow is redistributed, with comparatively minor redistribution correlating in accordance with ground truth measurements for change in mean transit time,dMTT(CEUS,<i>R</i> = 0.85; GT,<i>R</i> = 0.82) and change in peak intensity,dIp(CEUS,<i>R</i> = 0.87; GT,<i>R</i> = 0.96). Major redistributions, however, result in a loss of correlation, demonstrating that the effectiveness of time-intensity curve parameters is influenced by the site of occlusion. Conversely, results from SRU processing provides accurate depiction of the anatomy and dynamics present in the vascular bed, that extends to individual microvessels. Correspondence between model vessel structure displayed in SRU maps with the ground truth was>91%for cases of minor and major flow redistributions. In conclusion, SRU appears to be a highly promising technology in the quantification of subtle flow phenomena due ischaemia induced vascular flow redistribution.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583374/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of contrast-enhanced ultrasound imaging (CEUS) and super-resolution ultrasound (SRU) for the quantification of ischaemia flow redistribution: a theoretical study.\",\"authors\":\"Lachlan J M B Arthur, Vasiliki Voulgaridou, Mairead B Butler, Georgios Papageorgiou, Weiping Lu, Steven R McDougall, Vassilis Sboros\",\"doi\":\"10.1088/1361-6560/ad9231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study of microcirculation can reveal important information related to pathology. Focusing on alterations that are represented by an obstruction of blood flow in microcirculatory regions may provide an insight into vascular biomarkers. The current in silico study assesses the capability of contrast enhanced ultrasound (CEUS) and super-resolution ultrasound imaging (SRU) flow-quantification to study occlusive actions in a microvascular bed, particularly the ability to characterise known and model induced flow behaviours. The aim is to investigate theoretical limits with the use of CEUS and SRU in order to propose realistic biomarker targets relevant for clinical diagnosis. Results from CEUS flow parameters display limitations congruent with prior investigations. Conventional resolution limits lead to signals dominated by large vessels, making discrimination of microvasculature specific signals difficult. Additionally, some occlusions lead to weakened parametric correlation against flow rate in the remainder of the network. Loss of correlation is dependent on the degree to which flow is redistributed, with comparatively minor redistribution correlating in accordance with ground truth measurements for change in mean transit time,dMTT(CEUS,<i>R</i> = 0.85; GT,<i>R</i> = 0.82) and change in peak intensity,dIp(CEUS,<i>R</i> = 0.87; GT,<i>R</i> = 0.96). Major redistributions, however, result in a loss of correlation, demonstrating that the effectiveness of time-intensity curve parameters is influenced by the site of occlusion. Conversely, results from SRU processing provides accurate depiction of the anatomy and dynamics present in the vascular bed, that extends to individual microvessels. Correspondence between model vessel structure displayed in SRU maps with the ground truth was>91%for cases of minor and major flow redistributions. In conclusion, SRU appears to be a highly promising technology in the quantification of subtle flow phenomena due ischaemia induced vascular flow redistribution.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583374/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/ad9231\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad9231","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

微循环研究可以揭示与病理学相关的重要信息。当前的硅学研究评估了 CEUS 和 SRU 流量量化技术研究微血管床闭塞作用的能力,特别是描述已知和模型诱导的流动行为的能力。其目的是研究使用 CEUS 和即将在 SRU 中使用的粒子追踪技术的理论限制,以便提出与临床诊断相关的实际生物标记目标。CEUS血流参数的结果显示出与之前研究一致的局限性。传统的分辨率限制导致大血管信号占主导地位,使微血管特异性信号难以分辨 。此外,一些闭塞会导致参数与网络其余部分流速的相关性减弱 。相关性的丧失取决于血流被重新分配的程度,相对较小的重新分配与平均通过时间 dM T T(CEUS,R = 0.85;GT,R = 0.82)变化和峰值强度 dIp(CEUS,R = 0.87; GT,R = 0.96)变化的地面实况测量结果相关。然而,主要的重新分布会导致相关性丧失,这表明 TIC 相关参数的有效性取决于闭塞的位置。相反,SRU 处理的结果能准确 描述血管床的解剖结构和动态,并延伸到单个微血管。SRU 地图中显示的模型血管结构与地面实况之间的相关性在轻微和重大血流再分布情况下均大于 91%。总之,SRU 似乎是一种非常有前途的技术,可用于量化缺血引起的血管血流再分布造成的微妙血流现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of contrast-enhanced ultrasound imaging (CEUS) and super-resolution ultrasound (SRU) for the quantification of ischaemia flow redistribution: a theoretical study.

The study of microcirculation can reveal important information related to pathology. Focusing on alterations that are represented by an obstruction of blood flow in microcirculatory regions may provide an insight into vascular biomarkers. The current in silico study assesses the capability of contrast enhanced ultrasound (CEUS) and super-resolution ultrasound imaging (SRU) flow-quantification to study occlusive actions in a microvascular bed, particularly the ability to characterise known and model induced flow behaviours. The aim is to investigate theoretical limits with the use of CEUS and SRU in order to propose realistic biomarker targets relevant for clinical diagnosis. Results from CEUS flow parameters display limitations congruent with prior investigations. Conventional resolution limits lead to signals dominated by large vessels, making discrimination of microvasculature specific signals difficult. Additionally, some occlusions lead to weakened parametric correlation against flow rate in the remainder of the network. Loss of correlation is dependent on the degree to which flow is redistributed, with comparatively minor redistribution correlating in accordance with ground truth measurements for change in mean transit time,dMTT(CEUS,R = 0.85; GT,R = 0.82) and change in peak intensity,dIp(CEUS,R = 0.87; GT,R = 0.96). Major redistributions, however, result in a loss of correlation, demonstrating that the effectiveness of time-intensity curve parameters is influenced by the site of occlusion. Conversely, results from SRU processing provides accurate depiction of the anatomy and dynamics present in the vascular bed, that extends to individual microvessels. Correspondence between model vessel structure displayed in SRU maps with the ground truth was>91%for cases of minor and major flow redistributions. In conclusion, SRU appears to be a highly promising technology in the quantification of subtle flow phenomena due ischaemia induced vascular flow redistribution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Automated planning of curved needle channels in 3D printed patient-tailored applicators for cervical cancer brachytherapy. Comparison of contrast-enhanced ultrasound imaging (CEUS) and super-resolution ultrasound (SRU) for the quantification of ischaemia flow redistribution: a theoretical study. Novel frequency selective B1focusing passive Lenz resonators for substantial MRI signal-to-noise ratio amplification. On the microdosimetric characterisation of the radiation quality of a carbon-ion beam and the effect of the target volume thickness. Automated treatment planning with deep reinforcement learning for head-and-neck (HN) cancer intensity modulated radiation therapy (IMRT).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1