深度学习预测场景剂量,用于头颈部 IMPT 直接计划稳健性评估。

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2024-11-12 DOI:10.1088/1361-6560/ad8c95
Hazem A A Nomer, Franziska Knuth, Joep van Genderingen, Dan Nguyen, Margriet Sattler, András Zolnay, Uwe Oelfke, Steve Jiang, Linda Rossi, Ben J M Heijmen, Sebastiaan Breedveld
{"title":"深度学习预测场景剂量,用于头颈部 IMPT 直接计划稳健性评估。","authors":"Hazem A A Nomer, Franziska Knuth, Joep van Genderingen, Dan Nguyen, Margriet Sattler, András Zolnay, Uwe Oelfke, Steve Jiang, Linda Rossi, Ben J M Heijmen, Sebastiaan Breedveld","doi":"10.1088/1361-6560/ad8c95","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Intensity modulated proton therapy (IMPT) is susceptible to uncertainties in patient setup and proton range. Robust optimization is employed in IMPT treatment planning to ensure sufficient coverage of the clinical target volume (CTV) in predefined scenarios, albeit at a price of increased planning times. We investigated a deep learning (DL) strategy for dose predictions in individual error scenarios in head and neck cancer IMPT treatment planning, enabling direct evaluation of plan robustness. The model is able to differentiate between scenarios by using embeddings of the scenario index.<i>Approach</i>. To accommodate resolution disparities in planning CT-scans and accommodate the setup error scenarios, we introduced scenario-specific isocentric distance maps as inputs to the DL models. For 392 H&N cancer patients, high-quality 9-scenario ground truth (GT) robust plans were generated with wish-list driven fully automated multi-criteria optimization. The scenario index is converted to one-hot-vector that is used to derive the scenarios embeddings through the training of the DL model, aiding the model to predict a scenario specific dose distribution.<i>Main results</i>. The model achieved within 1%-point of agreement with the GT the predictedV95%of the voxelwise minimum dose for CTV Low and CTV High for 96% and 75% respectively of the test patients. Considering all robustness scenarios, median differences were 0.035%-point for CTV HighV95%, 0.11%-point for CTV LowV95%, 0.29 GyE for parotidsDmean, 0.7 GyE for submandibular glandsDmeanand 0.9 GyE for oral cavityDmean. Prediction of full 3D dose distributions for all scenarios took around 14 s.<i>Significance</i>. Predicting individual scenarios for robust proton therapy using DL dose prediction is feasible, enabling direct robustness evaluation of the predicted scenario doses.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":"69 22","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning prediction of scenario doses for direct plan robustness evaluations in IMPT for head-and-neck.\",\"authors\":\"Hazem A A Nomer, Franziska Knuth, Joep van Genderingen, Dan Nguyen, Margriet Sattler, András Zolnay, Uwe Oelfke, Steve Jiang, Linda Rossi, Ben J M Heijmen, Sebastiaan Breedveld\",\"doi\":\"10.1088/1361-6560/ad8c95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. Intensity modulated proton therapy (IMPT) is susceptible to uncertainties in patient setup and proton range. Robust optimization is employed in IMPT treatment planning to ensure sufficient coverage of the clinical target volume (CTV) in predefined scenarios, albeit at a price of increased planning times. We investigated a deep learning (DL) strategy for dose predictions in individual error scenarios in head and neck cancer IMPT treatment planning, enabling direct evaluation of plan robustness. The model is able to differentiate between scenarios by using embeddings of the scenario index.<i>Approach</i>. To accommodate resolution disparities in planning CT-scans and accommodate the setup error scenarios, we introduced scenario-specific isocentric distance maps as inputs to the DL models. For 392 H&N cancer patients, high-quality 9-scenario ground truth (GT) robust plans were generated with wish-list driven fully automated multi-criteria optimization. The scenario index is converted to one-hot-vector that is used to derive the scenarios embeddings through the training of the DL model, aiding the model to predict a scenario specific dose distribution.<i>Main results</i>. The model achieved within 1%-point of agreement with the GT the predictedV95%of the voxelwise minimum dose for CTV Low and CTV High for 96% and 75% respectively of the test patients. Considering all robustness scenarios, median differences were 0.035%-point for CTV HighV95%, 0.11%-point for CTV LowV95%, 0.29 GyE for parotidsDmean, 0.7 GyE for submandibular glandsDmeanand 0.9 GyE for oral cavityDmean. Prediction of full 3D dose distributions for all scenarios took around 14 s.<i>Significance</i>. Predicting individual scenarios for robust proton therapy using DL dose prediction is feasible, enabling direct robustness evaluation of the predicted scenario doses.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\"69 22\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/ad8c95\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad8c95","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的。强度调制质子疗法(IMPT)容易受到病人设置和质子射程不确定因素的影响。在 IMPT 治疗规划中采用了稳健的优化方法,以确保在预定义的情况下充分覆盖临床靶体积(CTV),但代价是规划时间的增加。我们研究了一种深度学习(DL)策略,用于预测头颈部癌症 IMPT 治疗规划中个别错误情况下的剂量,从而直接评估计划的鲁棒性。该模型能够通过使用场景指数的嵌入来区分不同的场景。为了适应规划 CT 扫描的分辨率差异和设置误差情景,我们引入了特定情景等中心距离图作为 DL 模型的输入。对于 392 名 H&N 癌症患者,通过愿望清单驱动的全自动多标准优化,生成了高质量的 9 个场景地面实况(GT)稳健计划。通过训练 DL 模型,将情景指数转换为一热向量,用于推导情景嵌入,帮助模型预测特定情景的剂量分布。96%和75%的测试患者的CTV Low和CTV High体素最小剂量的预测值为V95%,模型与GT的一致性在1%点以内。考虑到所有稳健性情况,CTV 高V95% 的中位差异为 0.035% 点,CTV 低V95% 的中位差异为 0.11% 点,腮腺平均值为 0.29 GyE,颌下腺平均值为 0.7 GyE,口腔平均值为 0.9 GyE。预测所有方案的全三维剂量分布大约需要 14 秒。利用DL剂量预测对强效质子治疗的各个方案进行预测是可行的,可以直接对预测的方案剂量进行稳健性评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning prediction of scenario doses for direct plan robustness evaluations in IMPT for head-and-neck.

Objective. Intensity modulated proton therapy (IMPT) is susceptible to uncertainties in patient setup and proton range. Robust optimization is employed in IMPT treatment planning to ensure sufficient coverage of the clinical target volume (CTV) in predefined scenarios, albeit at a price of increased planning times. We investigated a deep learning (DL) strategy for dose predictions in individual error scenarios in head and neck cancer IMPT treatment planning, enabling direct evaluation of plan robustness. The model is able to differentiate between scenarios by using embeddings of the scenario index.Approach. To accommodate resolution disparities in planning CT-scans and accommodate the setup error scenarios, we introduced scenario-specific isocentric distance maps as inputs to the DL models. For 392 H&N cancer patients, high-quality 9-scenario ground truth (GT) robust plans were generated with wish-list driven fully automated multi-criteria optimization. The scenario index is converted to one-hot-vector that is used to derive the scenarios embeddings through the training of the DL model, aiding the model to predict a scenario specific dose distribution.Main results. The model achieved within 1%-point of agreement with the GT the predictedV95%of the voxelwise minimum dose for CTV Low and CTV High for 96% and 75% respectively of the test patients. Considering all robustness scenarios, median differences were 0.035%-point for CTV HighV95%, 0.11%-point for CTV LowV95%, 0.29 GyE for parotidsDmean, 0.7 GyE for submandibular glandsDmeanand 0.9 GyE for oral cavityDmean. Prediction of full 3D dose distributions for all scenarios took around 14 s.Significance. Predicting individual scenarios for robust proton therapy using DL dose prediction is feasible, enabling direct robustness evaluation of the predicted scenario doses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Multi-label segmentation of carpal bones in MRI using expansion transfer learning. Detection and correction of translational motion in SPECT with exponential data consistency conditions. A ConvLSTM-based model for predicting thermal damage during laser interstitial thermal therapy. Optimizing TMS dosimetry: evaluating the effective electric field as a novel metric. Transition to GPU-based reconstruction for clinical organ-targeted PET scanner.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1