Minrui Ji, Zaixin Yuan, Hongdong Ma, Xian Feng, Cong Ye, Lei Shi, Xiaodong Chen, Fei Han, Caichou Zhao
{"title":"用于分层刺激和全面调节伤口愈合的蒲公英形锶镓微粒。","authors":"Minrui Ji, Zaixin Yuan, Hongdong Ma, Xian Feng, Cong Ye, Lei Shi, Xiaodong Chen, Fei Han, Caichou Zhao","doi":"10.1093/rb/rbae121","DOIUrl":null,"url":null,"abstract":"<p><p>The management of full-thickness skin injuries continues to pose significant challenges. Currently, there is a dearth of comprehensive dressings capable of integrating all stages of wound healing to spatiotemporally regulate biological processes following full-thickness skin injuries. In this study, we report the synthesis of a dandelion-shaped mesoporous strontium-gallium microparticle (GE@SrTPP) achieved through dopamine-mediated strontium ion biomineralization and self-assembly, followed by functionalization with gallium metal polyphenol networks. As a multifunctional wound dressing, GE@SrTPP can release bioactive ions in a spatiotemporal manner akin to dandelion seeds. During the early stages of wound healing, GE@SrTPP demonstrates rapid and effective hemostatic performance while also exhibiting antibacterial properties. In the inflammatory phase, GE@SrTPP promotes M2 polarization of macrophages, suppresses the expression of pro-inflammatory factors, and decreases oxidative stress in wounds. Subsequently, during the stages of proliferation and tissue remodeling, GE@SrTPP facilitates angiogenesis through the activation of the Hypoxia-inducible factor-1α/vascular endothelial growth factor (HIF-1α/VEGF) pathway. Analogous to the dispersion and rooting of dandelion seeds, the root-like new blood vessels supply essential nutrients for wound healing. Ultimately, in a rat chronic wound model, GE@SrTPP achieved successful full-thickness wound repair. In summary, these dandelion-shaped GE@SrTPP microparticles demonstrate comprehensive regulatory effects in managing full-thickness wounds, making them highly promising materials for clinical applications.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae121"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561401/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dandelion-shaped strontium-gallium microparticles for the hierarchical stimulation and comprehensive regulation of wound healing.\",\"authors\":\"Minrui Ji, Zaixin Yuan, Hongdong Ma, Xian Feng, Cong Ye, Lei Shi, Xiaodong Chen, Fei Han, Caichou Zhao\",\"doi\":\"10.1093/rb/rbae121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The management of full-thickness skin injuries continues to pose significant challenges. Currently, there is a dearth of comprehensive dressings capable of integrating all stages of wound healing to spatiotemporally regulate biological processes following full-thickness skin injuries. In this study, we report the synthesis of a dandelion-shaped mesoporous strontium-gallium microparticle (GE@SrTPP) achieved through dopamine-mediated strontium ion biomineralization and self-assembly, followed by functionalization with gallium metal polyphenol networks. As a multifunctional wound dressing, GE@SrTPP can release bioactive ions in a spatiotemporal manner akin to dandelion seeds. During the early stages of wound healing, GE@SrTPP demonstrates rapid and effective hemostatic performance while also exhibiting antibacterial properties. In the inflammatory phase, GE@SrTPP promotes M2 polarization of macrophages, suppresses the expression of pro-inflammatory factors, and decreases oxidative stress in wounds. Subsequently, during the stages of proliferation and tissue remodeling, GE@SrTPP facilitates angiogenesis through the activation of the Hypoxia-inducible factor-1α/vascular endothelial growth factor (HIF-1α/VEGF) pathway. Analogous to the dispersion and rooting of dandelion seeds, the root-like new blood vessels supply essential nutrients for wound healing. Ultimately, in a rat chronic wound model, GE@SrTPP achieved successful full-thickness wound repair. In summary, these dandelion-shaped GE@SrTPP microparticles demonstrate comprehensive regulatory effects in managing full-thickness wounds, making them highly promising materials for clinical applications.</p>\",\"PeriodicalId\":20929,\"journal\":{\"name\":\"Regenerative Biomaterials\",\"volume\":\"11 \",\"pages\":\"rbae121\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561401/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/rb/rbae121\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae121","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Dandelion-shaped strontium-gallium microparticles for the hierarchical stimulation and comprehensive regulation of wound healing.
The management of full-thickness skin injuries continues to pose significant challenges. Currently, there is a dearth of comprehensive dressings capable of integrating all stages of wound healing to spatiotemporally regulate biological processes following full-thickness skin injuries. In this study, we report the synthesis of a dandelion-shaped mesoporous strontium-gallium microparticle (GE@SrTPP) achieved through dopamine-mediated strontium ion biomineralization and self-assembly, followed by functionalization with gallium metal polyphenol networks. As a multifunctional wound dressing, GE@SrTPP can release bioactive ions in a spatiotemporal manner akin to dandelion seeds. During the early stages of wound healing, GE@SrTPP demonstrates rapid and effective hemostatic performance while also exhibiting antibacterial properties. In the inflammatory phase, GE@SrTPP promotes M2 polarization of macrophages, suppresses the expression of pro-inflammatory factors, and decreases oxidative stress in wounds. Subsequently, during the stages of proliferation and tissue remodeling, GE@SrTPP facilitates angiogenesis through the activation of the Hypoxia-inducible factor-1α/vascular endothelial growth factor (HIF-1α/VEGF) pathway. Analogous to the dispersion and rooting of dandelion seeds, the root-like new blood vessels supply essential nutrients for wound healing. Ultimately, in a rat chronic wound model, GE@SrTPP achieved successful full-thickness wound repair. In summary, these dandelion-shaped GE@SrTPP microparticles demonstrate comprehensive regulatory effects in managing full-thickness wounds, making them highly promising materials for clinical applications.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.