{"title":"2000 年至 2020 年中国 4 公里日网格气象数据集。","authors":"Jielin Zhang, Bo Liu, Siqing Ren, Wenqi Han, Yongxia Ding, Shouzhang Peng","doi":"10.1038/s41597-024-04029-x","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-variate gridded meteorological data with high spatial resolution play a key role in studies related to climate change. This study constructed a 4 km daily gridded meteorological dataset for mainland of China (China Daily Meteorological Dataset; CDMet) from 2000 to 2020. The dataset includes nine meteorological variables: 2-meter air temperature (maximum, minimum, and mean temperatures), total precipitation, skin temperature, 10-meter wind speed, relative humidity, surface pressure, and sunshine duration. CDMet was generated using an adaptive interpolation scheme, which employed thin-plate spline and random forest methods to construct the interpolation model. Six combinations of location and terrain information were designed and used as covariates in the model together with reanalysis data. Validation with independent observation stations and existing datasets showed that CDMet has acceptable accuracy, reasonable seasonal variability, and precise spatial distribution, and its accuracy is comparable to that of other datasets. Due to its comprehensive variables and high resolution, CDMet can be used as input data for hydrological, agricultural, and ecological models.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1230"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564775/pdf/","citationCount":"0","resultStr":"{\"title\":\"A 4 km daily gridded meteorological dataset for China from 2000 to 2020.\",\"authors\":\"Jielin Zhang, Bo Liu, Siqing Ren, Wenqi Han, Yongxia Ding, Shouzhang Peng\",\"doi\":\"10.1038/s41597-024-04029-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multi-variate gridded meteorological data with high spatial resolution play a key role in studies related to climate change. This study constructed a 4 km daily gridded meteorological dataset for mainland of China (China Daily Meteorological Dataset; CDMet) from 2000 to 2020. The dataset includes nine meteorological variables: 2-meter air temperature (maximum, minimum, and mean temperatures), total precipitation, skin temperature, 10-meter wind speed, relative humidity, surface pressure, and sunshine duration. CDMet was generated using an adaptive interpolation scheme, which employed thin-plate spline and random forest methods to construct the interpolation model. Six combinations of location and terrain information were designed and used as covariates in the model together with reanalysis data. Validation with independent observation stations and existing datasets showed that CDMet has acceptable accuracy, reasonable seasonal variability, and precise spatial distribution, and its accuracy is comparable to that of other datasets. Due to its comprehensive variables and high resolution, CDMet can be used as input data for hydrological, agricultural, and ecological models.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1230\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564775/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-04029-x\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04029-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A 4 km daily gridded meteorological dataset for China from 2000 to 2020.
Multi-variate gridded meteorological data with high spatial resolution play a key role in studies related to climate change. This study constructed a 4 km daily gridded meteorological dataset for mainland of China (China Daily Meteorological Dataset; CDMet) from 2000 to 2020. The dataset includes nine meteorological variables: 2-meter air temperature (maximum, minimum, and mean temperatures), total precipitation, skin temperature, 10-meter wind speed, relative humidity, surface pressure, and sunshine duration. CDMet was generated using an adaptive interpolation scheme, which employed thin-plate spline and random forest methods to construct the interpolation model. Six combinations of location and terrain information were designed and used as covariates in the model together with reanalysis data. Validation with independent observation stations and existing datasets showed that CDMet has acceptable accuracy, reasonable seasonal variability, and precise spatial distribution, and its accuracy is comparable to that of other datasets. Due to its comprehensive variables and high resolution, CDMet can be used as input data for hydrological, agricultural, and ecological models.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.