准晶体及其近似值的综合实验数据集。

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2024-11-13 DOI:10.1038/s41597-024-04043-z
Erina Fujita, Chang Liu, Asuka Ishikawa, Tomoya Mato, Koichi Kitahara, Ryuji Tamura, Kaoru Kimura, Ryo Yoshida, Yukari Katsura
{"title":"准晶体及其近似值的综合实验数据集。","authors":"Erina Fujita, Chang Liu, Asuka Ishikawa, Tomoya Mato, Koichi Kitahara, Ryuji Tamura, Kaoru Kimura, Ryo Yoshida, Yukari Katsura","doi":"10.1038/s41597-024-04043-z","DOIUrl":null,"url":null,"abstract":"<p><p>Quasicrystals are solid-state materials that typically exhibit unique symmetries, such as icosahedral or decagonal diffraction symmetry. They were first discovered in 1984. Over the past four decades of quasicrystal research, around 100 stable quasicrystals have been discovered. In recent years, machine learning has been employed to explore quasicrystals with unique properties inherent to quasiperiodic systems. However, the lack of open data on quasicrystal composition, structure, and physical properties has hindered the widespread use of machine learning in quasicrystal research. This study involves a comprehensive literature review and manual data extraction to develop open datasets consisting of composition, structure types, phase diagrams, and sample fabrication processes for a wide range of stable and metastable quasicrystals and approximant crystals, as well as the temperature-dependent thermal, electrical, and magnetic properties.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1211"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561344/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive experimental datasets of quasicrystals and their approximants.\",\"authors\":\"Erina Fujita, Chang Liu, Asuka Ishikawa, Tomoya Mato, Koichi Kitahara, Ryuji Tamura, Kaoru Kimura, Ryo Yoshida, Yukari Katsura\",\"doi\":\"10.1038/s41597-024-04043-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quasicrystals are solid-state materials that typically exhibit unique symmetries, such as icosahedral or decagonal diffraction symmetry. They were first discovered in 1984. Over the past four decades of quasicrystal research, around 100 stable quasicrystals have been discovered. In recent years, machine learning has been employed to explore quasicrystals with unique properties inherent to quasiperiodic systems. However, the lack of open data on quasicrystal composition, structure, and physical properties has hindered the widespread use of machine learning in quasicrystal research. This study involves a comprehensive literature review and manual data extraction to develop open datasets consisting of composition, structure types, phase diagrams, and sample fabrication processes for a wide range of stable and metastable quasicrystals and approximant crystals, as well as the temperature-dependent thermal, electrical, and magnetic properties.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1211\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561344/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-04043-z\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04043-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

准晶体是一种固态材料,通常表现出独特的对称性,例如二十面体或十边形衍射对称性。它们于 1984 年首次被发现。在过去 40 年的准晶体研究中,已发现约 100 种稳定的准晶体。近年来,人们利用机器学习来探索具有准周期系统固有的独特性质的准晶体。然而,由于缺乏有关准晶体组成、结构和物理性质的公开数据,阻碍了机器学习在准晶体研究中的广泛应用。本研究通过全面的文献综述和手动数据提取,开发了开放数据集,其中包括各种稳定和瞬变准晶体和近似晶体的组成、结构类型、相图和样品制造工艺,以及随温度变化的热、电和磁特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comprehensive experimental datasets of quasicrystals and their approximants.

Quasicrystals are solid-state materials that typically exhibit unique symmetries, such as icosahedral or decagonal diffraction symmetry. They were first discovered in 1984. Over the past four decades of quasicrystal research, around 100 stable quasicrystals have been discovered. In recent years, machine learning has been employed to explore quasicrystals with unique properties inherent to quasiperiodic systems. However, the lack of open data on quasicrystal composition, structure, and physical properties has hindered the widespread use of machine learning in quasicrystal research. This study involves a comprehensive literature review and manual data extraction to develop open datasets consisting of composition, structure types, phase diagrams, and sample fabrication processes for a wide range of stable and metastable quasicrystals and approximant crystals, as well as the temperature-dependent thermal, electrical, and magnetic properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
A chromosome-level genome assembly of the heteronomous hyperparasitoid wasp Encarsia sophia. A geospatial dataset of lichen key attributes in the Earth's three poles. An fMRI dataset in response to large-scale short natural dynamic facial expression videos. Chromosome-level genome assembly of the mud carp (Cirrhinus molitorella) using PacBio HiFi and Hi-C sequencing. An annual land cover dataset for the Baltic Sea Region with crop types and peat bogs at 30 m from 2000 to 2022.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1