通过多源卫星数据和深林模型对中国二氧化碳浓度进行全覆盖估算。

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2024-11-14 DOI:10.1038/s41597-024-04063-9
Kun Cai, Liuyin Guan, Shenshen Li, Shuo Zhang, Yang Liu, Yang Liu
{"title":"通过多源卫星数据和深林模型对中国二氧化碳浓度进行全覆盖估算。","authors":"Kun Cai, Liuyin Guan, Shenshen Li, Shuo Zhang, Yang Liu, Yang Liu","doi":"10.1038/s41597-024-04063-9","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring China's carbon dioxide (CO<sub>2</sub>) concentration is essential for formulating effective carbon cycle policies to achieve carbon peaking and neutrality. Despite insufficient satellite observation coverage, this study utilizes high-resolution spatiotemporal data from the Orbiting Carbon Observatory 2 (OCO-2), supplemented with various auxiliary datasets, to estimate full-coverage, monthly, column-averaged carbon dioxide (XCO<sub>2</sub>) values across China from 2015 to 2022 at a spatial resolution of 0.05° via the deep forest model. The 10-fold cross-validation results indicate a correlation coefficient (R) of 0.95 and a determination coefficient (R²) of 0.90. Validation against ground-based station data yielded R values of 0.93, and R² values reached 0.81. Further validation from the Greenhouse Gases Observing Satellite (GOSAT) and the Copernicus Atmosphere Monitoring Service Reanalysis dataset (CAMS) produced R² values of 0.87 and 0.80, respectively. During the study period, CO<sub>2</sub> concentrations in China were higher in spring and winter than in summer and autumn, indicating a clear annual increase. The estimates generated by this study could potentially support CO<sub>2</sub> monitoring in China.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1231"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564725/pdf/","citationCount":"0","resultStr":"{\"title\":\"Full-coverage estimation of CO<sub>2</sub> concentrations in China via multisource satellite data and Deep Forest model.\",\"authors\":\"Kun Cai, Liuyin Guan, Shenshen Li, Shuo Zhang, Yang Liu, Yang Liu\",\"doi\":\"10.1038/s41597-024-04063-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monitoring China's carbon dioxide (CO<sub>2</sub>) concentration is essential for formulating effective carbon cycle policies to achieve carbon peaking and neutrality. Despite insufficient satellite observation coverage, this study utilizes high-resolution spatiotemporal data from the Orbiting Carbon Observatory 2 (OCO-2), supplemented with various auxiliary datasets, to estimate full-coverage, monthly, column-averaged carbon dioxide (XCO<sub>2</sub>) values across China from 2015 to 2022 at a spatial resolution of 0.05° via the deep forest model. The 10-fold cross-validation results indicate a correlation coefficient (R) of 0.95 and a determination coefficient (R²) of 0.90. Validation against ground-based station data yielded R values of 0.93, and R² values reached 0.81. Further validation from the Greenhouse Gases Observing Satellite (GOSAT) and the Copernicus Atmosphere Monitoring Service Reanalysis dataset (CAMS) produced R² values of 0.87 and 0.80, respectively. During the study period, CO<sub>2</sub> concentrations in China were higher in spring and winter than in summer and autumn, indicating a clear annual increase. The estimates generated by this study could potentially support CO<sub>2</sub> monitoring in China.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1231\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564725/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-04063-9\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04063-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

监测中国的二氧化碳(CO2)浓度对于制定有效的碳循环政策以实现碳封顶和碳中和至关重要。尽管卫星观测覆盖面不足,但本研究利用轨道碳观测站 2 号(OCO-2)的高分辨率时空数据,辅以各种辅助数据集,通过深林模型估算了 2015 年至 2022 年中国全覆盖、月度、柱平均二氧化碳(XCO2)值,空间分辨率为 0.05°。10 倍交叉验证结果表明,相关系数 (R) 为 0.95,判定系数 (R²) 为 0.90。通过对地面站数据的验证,R 值为 0.93,R² 值达到 0.81。温室气体观测卫星(GOSAT)和哥白尼大气监测服务再分析数据集(CAMS)的进一步验证产生的 R² 值分别为 0.87 和 0.80。在研究期间,中国春季和冬季的二氧化碳浓度高于夏季和秋季,显示出明显的逐年上升趋势。本研究得出的估算值有可能为中国的二氧化碳监测提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Full-coverage estimation of CO2 concentrations in China via multisource satellite data and Deep Forest model.

Monitoring China's carbon dioxide (CO2) concentration is essential for formulating effective carbon cycle policies to achieve carbon peaking and neutrality. Despite insufficient satellite observation coverage, this study utilizes high-resolution spatiotemporal data from the Orbiting Carbon Observatory 2 (OCO-2), supplemented with various auxiliary datasets, to estimate full-coverage, monthly, column-averaged carbon dioxide (XCO2) values across China from 2015 to 2022 at a spatial resolution of 0.05° via the deep forest model. The 10-fold cross-validation results indicate a correlation coefficient (R) of 0.95 and a determination coefficient (R²) of 0.90. Validation against ground-based station data yielded R values of 0.93, and R² values reached 0.81. Further validation from the Greenhouse Gases Observing Satellite (GOSAT) and the Copernicus Atmosphere Monitoring Service Reanalysis dataset (CAMS) produced R² values of 0.87 and 0.80, respectively. During the study period, CO2 concentrations in China were higher in spring and winter than in summer and autumn, indicating a clear annual increase. The estimates generated by this study could potentially support CO2 monitoring in China.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
A chromosome-level genome assembly of the heteronomous hyperparasitoid wasp Encarsia sophia. A geospatial dataset of lichen key attributes in the Earth's three poles. An fMRI dataset in response to large-scale short natural dynamic facial expression videos. Chromosome-level genome assembly of the mud carp (Cirrhinus molitorella) using PacBio HiFi and Hi-C sequencing. An annual land cover dataset for the Baltic Sea Region with crop types and peat bogs at 30 m from 2000 to 2022.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1