Kun Cai, Liuyin Guan, Shenshen Li, Shuo Zhang, Yang Liu, Yang Liu
{"title":"通过多源卫星数据和深林模型对中国二氧化碳浓度进行全覆盖估算。","authors":"Kun Cai, Liuyin Guan, Shenshen Li, Shuo Zhang, Yang Liu, Yang Liu","doi":"10.1038/s41597-024-04063-9","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring China's carbon dioxide (CO<sub>2</sub>) concentration is essential for formulating effective carbon cycle policies to achieve carbon peaking and neutrality. Despite insufficient satellite observation coverage, this study utilizes high-resolution spatiotemporal data from the Orbiting Carbon Observatory 2 (OCO-2), supplemented with various auxiliary datasets, to estimate full-coverage, monthly, column-averaged carbon dioxide (XCO<sub>2</sub>) values across China from 2015 to 2022 at a spatial resolution of 0.05° via the deep forest model. The 10-fold cross-validation results indicate a correlation coefficient (R) of 0.95 and a determination coefficient (R²) of 0.90. Validation against ground-based station data yielded R values of 0.93, and R² values reached 0.81. Further validation from the Greenhouse Gases Observing Satellite (GOSAT) and the Copernicus Atmosphere Monitoring Service Reanalysis dataset (CAMS) produced R² values of 0.87 and 0.80, respectively. During the study period, CO<sub>2</sub> concentrations in China were higher in spring and winter than in summer and autumn, indicating a clear annual increase. The estimates generated by this study could potentially support CO<sub>2</sub> monitoring in China.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1231"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564725/pdf/","citationCount":"0","resultStr":"{\"title\":\"Full-coverage estimation of CO<sub>2</sub> concentrations in China via multisource satellite data and Deep Forest model.\",\"authors\":\"Kun Cai, Liuyin Guan, Shenshen Li, Shuo Zhang, Yang Liu, Yang Liu\",\"doi\":\"10.1038/s41597-024-04063-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monitoring China's carbon dioxide (CO<sub>2</sub>) concentration is essential for formulating effective carbon cycle policies to achieve carbon peaking and neutrality. Despite insufficient satellite observation coverage, this study utilizes high-resolution spatiotemporal data from the Orbiting Carbon Observatory 2 (OCO-2), supplemented with various auxiliary datasets, to estimate full-coverage, monthly, column-averaged carbon dioxide (XCO<sub>2</sub>) values across China from 2015 to 2022 at a spatial resolution of 0.05° via the deep forest model. The 10-fold cross-validation results indicate a correlation coefficient (R) of 0.95 and a determination coefficient (R²) of 0.90. Validation against ground-based station data yielded R values of 0.93, and R² values reached 0.81. Further validation from the Greenhouse Gases Observing Satellite (GOSAT) and the Copernicus Atmosphere Monitoring Service Reanalysis dataset (CAMS) produced R² values of 0.87 and 0.80, respectively. During the study period, CO<sub>2</sub> concentrations in China were higher in spring and winter than in summer and autumn, indicating a clear annual increase. The estimates generated by this study could potentially support CO<sub>2</sub> monitoring in China.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1231\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564725/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-04063-9\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04063-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Full-coverage estimation of CO2 concentrations in China via multisource satellite data and Deep Forest model.
Monitoring China's carbon dioxide (CO2) concentration is essential for formulating effective carbon cycle policies to achieve carbon peaking and neutrality. Despite insufficient satellite observation coverage, this study utilizes high-resolution spatiotemporal data from the Orbiting Carbon Observatory 2 (OCO-2), supplemented with various auxiliary datasets, to estimate full-coverage, monthly, column-averaged carbon dioxide (XCO2) values across China from 2015 to 2022 at a spatial resolution of 0.05° via the deep forest model. The 10-fold cross-validation results indicate a correlation coefficient (R) of 0.95 and a determination coefficient (R²) of 0.90. Validation against ground-based station data yielded R values of 0.93, and R² values reached 0.81. Further validation from the Greenhouse Gases Observing Satellite (GOSAT) and the Copernicus Atmosphere Monitoring Service Reanalysis dataset (CAMS) produced R² values of 0.87 and 0.80, respectively. During the study period, CO2 concentrations in China were higher in spring and winter than in summer and autumn, indicating a clear annual increase. The estimates generated by this study could potentially support CO2 monitoring in China.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.