对全机械化长壁掘进中的洞穴特征和上覆地层移动的事后分析。

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Reports Pub Date : 2024-11-15 DOI:10.1038/s41598-024-79968-x
Chenlin Wang, Lihui Sun, Haoran Shen
{"title":"对全机械化长壁掘进中的洞穴特征和上覆地层移动的事后分析。","authors":"Chenlin Wang, Lihui Sun, Haoran Shen","doi":"10.1038/s41598-024-79968-x","DOIUrl":null,"url":null,"abstract":"<p><p>The large-scale collapse of overlying strata in the gob directly affect the safe production of coal mines; they are also the major causes of geological disasters, such as ground cracks, surface subsidence, and ground collapse. In this paper, the movement and caved characteristics of overlying strata during coal seam excavation are studied by conducting a physical model experiment. Results show that overlying strata have different movement and caved laws during the initial, intermediate, and later mining stages. During the initial mining stage, overlying strata do not collapse, and the subsidence is extremely small. During the intermediate mining stage, overlying strata cave along the vertical direction, and caved height gradually increases. Large numbers of cavities, abscission layers, and fractures exist between caved strata. The fractured area gradually increases upward, and the subsidence increases considerably. During the later mining stage, overlying strata cave along the horizontal direction. The abscission layers between the caved strata of the central are compacted. The compacted area is surrounded by a fractured area. The compacted and fractured areas increase along the horizontal direction. The subsidence curves exhibit a horizontal variation. Overlying strata evolve from the self-equilibrium stage to the vertical collapse stage, and finally, the horizontal collapse stage. The fractured area changes from a no fractured area to a fractured area, increases vertically, and finally, increases horizontally. The subsidence curve changes from extremely small to large, and finally, changes horizontally.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An aftermath analysis of caving characteristics and movement of overlying strata in fully mechanized longwall gob.\",\"authors\":\"Chenlin Wang, Lihui Sun, Haoran Shen\",\"doi\":\"10.1038/s41598-024-79968-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The large-scale collapse of overlying strata in the gob directly affect the safe production of coal mines; they are also the major causes of geological disasters, such as ground cracks, surface subsidence, and ground collapse. In this paper, the movement and caved characteristics of overlying strata during coal seam excavation are studied by conducting a physical model experiment. Results show that overlying strata have different movement and caved laws during the initial, intermediate, and later mining stages. During the initial mining stage, overlying strata do not collapse, and the subsidence is extremely small. During the intermediate mining stage, overlying strata cave along the vertical direction, and caved height gradually increases. Large numbers of cavities, abscission layers, and fractures exist between caved strata. The fractured area gradually increases upward, and the subsidence increases considerably. During the later mining stage, overlying strata cave along the horizontal direction. The abscission layers between the caved strata of the central are compacted. The compacted area is surrounded by a fractured area. The compacted and fractured areas increase along the horizontal direction. The subsidence curves exhibit a horizontal variation. Overlying strata evolve from the self-equilibrium stage to the vertical collapse stage, and finally, the horizontal collapse stage. The fractured area changes from a no fractured area to a fractured area, increases vertically, and finally, increases horizontally. The subsidence curve changes from extremely small to large, and finally, changes horizontally.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-79968-x\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-79968-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

煤巷上覆地层大面积塌陷直接影响煤矿的安全生产,也是造成地裂缝、地表沉陷、地面塌陷等地质灾害的主要原因。本文通过物理模型试验,研究了煤层掘进过程中上覆地层的运动和塌陷特征。结果表明,上覆地层在开采初期、中期和后期具有不同的运动和塌陷规律。在初期开采阶段,上覆地层不塌陷,下沉量极小。在开采中期,上覆地层沿垂直方向塌陷,塌陷高度逐渐增大。塌陷地层之间存在大量空洞、剥离层和断裂。断裂面积逐渐向上增大,沉降量显著增加。在开采后期,上覆地层沿水平方向塌陷。中部塌陷地层之间的剥离层被压实。压实区周围是断裂区。压实区和断裂区沿水平方向增大。沉降曲线呈现水平变化。上覆地层从自平衡阶段发展到垂直塌陷阶段,最后进入水平塌陷阶段。断裂区从无断裂区变为断裂区,垂直方向增加,最后水平方向增加。下沉曲线由极小变大,最后水平变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An aftermath analysis of caving characteristics and movement of overlying strata in fully mechanized longwall gob.

The large-scale collapse of overlying strata in the gob directly affect the safe production of coal mines; they are also the major causes of geological disasters, such as ground cracks, surface subsidence, and ground collapse. In this paper, the movement and caved characteristics of overlying strata during coal seam excavation are studied by conducting a physical model experiment. Results show that overlying strata have different movement and caved laws during the initial, intermediate, and later mining stages. During the initial mining stage, overlying strata do not collapse, and the subsidence is extremely small. During the intermediate mining stage, overlying strata cave along the vertical direction, and caved height gradually increases. Large numbers of cavities, abscission layers, and fractures exist between caved strata. The fractured area gradually increases upward, and the subsidence increases considerably. During the later mining stage, overlying strata cave along the horizontal direction. The abscission layers between the caved strata of the central are compacted. The compacted area is surrounded by a fractured area. The compacted and fractured areas increase along the horizontal direction. The subsidence curves exhibit a horizontal variation. Overlying strata evolve from the self-equilibrium stage to the vertical collapse stage, and finally, the horizontal collapse stage. The fractured area changes from a no fractured area to a fractured area, increases vertically, and finally, increases horizontally. The subsidence curve changes from extremely small to large, and finally, changes horizontally.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
期刊最新文献
An aftermath analysis of caving characteristics and movement of overlying strata in fully mechanized longwall gob. Analysis of metabolites associated with ADIPOQ genotypes in individuals with type 2 diabetes mellitus. Motor inhibition during voluntary gait initiation in young and older adults. Anti-industry beliefs and attitudes mediate the effect of culturally tailored anti-smoking messages on quit intentions among sexual minority women. Blockchain-based energy consumption approaches in IoT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1