Sierra Pugh, Andrew T Levin, Gideon Meyerowitz-Katz, Satej Soman, Nana Owusu-Boaitey, Anthony B Zwi, Anup Malani, Ander Wilson, Bailey K Fosdick
{"title":"估算发展中国家特定年龄 COVID-19 感染致死率的层次贝叶斯模型。","authors":"Sierra Pugh, Andrew T Levin, Gideon Meyerowitz-Katz, Satej Soman, Nana Owusu-Boaitey, Anthony B Zwi, Anup Malani, Ander Wilson, Bailey K Fosdick","doi":"10.1002/sim.10259","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 infection fatality rate (IFR) is the proportion of individuals infected with SARS-CoV-2 who subsequently die. As COVID-19 disproportionately affects older individuals, age-specific IFR estimates are imperative to facilitate comparisons of the impact of COVID-19 between locations and prioritize distribution of scarce resources. However, there lacks a coherent method to synthesize available data to create estimates of IFR and seroprevalence that vary continuously with age and adequately reflect uncertainties inherent in the underlying data. In this article, we introduce a novel Bayesian hierarchical model to estimate IFR as a continuous function of age that acknowledges heterogeneity in population age structure across locations and accounts for uncertainty in the estimates due to seroprevalence sampling variability and the imperfect serology test assays. Our approach simultaneously models test assay characteristics, serology, and death data, where the serology and death data are often available only for binned age groups. Information is shared across locations through hierarchical modeling to improve estimation of the parameters with limited data. Modeling data from 26 developing country locations during the first year of the COVID-19 pandemic, we found seroprevalence did not change dramatically with age, and the IFR at age 60 was above the high-income country estimate for most locations.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hierarchical Bayesian Model for Estimating Age-Specific COVID-19 Infection Fatality Rates in Developing Countries.\",\"authors\":\"Sierra Pugh, Andrew T Levin, Gideon Meyerowitz-Katz, Satej Soman, Nana Owusu-Boaitey, Anthony B Zwi, Anup Malani, Ander Wilson, Bailey K Fosdick\",\"doi\":\"10.1002/sim.10259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The COVID-19 infection fatality rate (IFR) is the proportion of individuals infected with SARS-CoV-2 who subsequently die. As COVID-19 disproportionately affects older individuals, age-specific IFR estimates are imperative to facilitate comparisons of the impact of COVID-19 between locations and prioritize distribution of scarce resources. However, there lacks a coherent method to synthesize available data to create estimates of IFR and seroprevalence that vary continuously with age and adequately reflect uncertainties inherent in the underlying data. In this article, we introduce a novel Bayesian hierarchical model to estimate IFR as a continuous function of age that acknowledges heterogeneity in population age structure across locations and accounts for uncertainty in the estimates due to seroprevalence sampling variability and the imperfect serology test assays. Our approach simultaneously models test assay characteristics, serology, and death data, where the serology and death data are often available only for binned age groups. Information is shared across locations through hierarchical modeling to improve estimation of the parameters with limited data. Modeling data from 26 developing country locations during the first year of the COVID-19 pandemic, we found seroprevalence did not change dramatically with age, and the IFR at age 60 was above the high-income country estimate for most locations.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.10259\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10259","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A Hierarchical Bayesian Model for Estimating Age-Specific COVID-19 Infection Fatality Rates in Developing Countries.
The COVID-19 infection fatality rate (IFR) is the proportion of individuals infected with SARS-CoV-2 who subsequently die. As COVID-19 disproportionately affects older individuals, age-specific IFR estimates are imperative to facilitate comparisons of the impact of COVID-19 between locations and prioritize distribution of scarce resources. However, there lacks a coherent method to synthesize available data to create estimates of IFR and seroprevalence that vary continuously with age and adequately reflect uncertainties inherent in the underlying data. In this article, we introduce a novel Bayesian hierarchical model to estimate IFR as a continuous function of age that acknowledges heterogeneity in population age structure across locations and accounts for uncertainty in the estimates due to seroprevalence sampling variability and the imperfect serology test assays. Our approach simultaneously models test assay characteristics, serology, and death data, where the serology and death data are often available only for binned age groups. Information is shared across locations through hierarchical modeling to improve estimation of the parameters with limited data. Modeling data from 26 developing country locations during the first year of the COVID-19 pandemic, we found seroprevalence did not change dramatically with age, and the IFR at age 60 was above the high-income country estimate for most locations.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.