{"title":"力触发密度梯度沉降和鸡尾酒酶消化处理,用于从毛囊单位提取收获的人类毛囊中分离单个真皮乳头细胞。","authors":"Junfei Huang, Jian Chen, Haoyuan Li, Zhexiang Fan, Yuyang Gan, Yangpeng Chen, Lijuan Du","doi":"10.1186/s13287-024-04026-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hair follicles (HFs) are dynamic structures which are readily accessible within the skin that contain various pools of stem cells with broad regenerative potential, such as dermal papilla cells (DPCs), dermal sheath cells, and epithelial HF stem cells. DPCs act as signalling centres for HF regeneration. The current method for isolating human DPCs are inefficient. These methods struggle to obtain freshly isolated original DPCs and do not maintain the characteristics of DPCs effectively.</p><p><strong>Methods: </strong>In this study, two simple but more efficient methods were explored. Force-triggered density gradient sedimentation (FDGS) and cocktail enzyme digestion treatment (CEDT) were used to isolate purified DP spheres from human HFs, obtaining purified freshly isolated original DPCs from DP spheres. The expression profiles of isolated DPCs were tested, and gene expression of DPC-specific markers were analyzed using immunofluorescence staining, RT-qPCR and western blot.</p><p><strong>Results: </strong>The 10% Ficoll PM400 was determined as the optimal concentration for FDGS method. Primary DPCs, DSCs and HFSCs were isolated simultaneously using the FDGS and CEDT method. The expression profiles of fresh DPCs isolated using the FDGS and CEDT methods were similar to those of traditionally isolated DPCs. DP-specific markers were expressed at significantly higher levels in freshly isolated DPCs than in traditionally isolated DPCs.</p><p><strong>Conclusions: </strong>Compared to traditional methods, the presented laboratory protocols were able to isolate fresh DPCs with high efficiency, thereby improving their research potential.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"416"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559101/pdf/","citationCount":"0","resultStr":"{\"title\":\"Force-triggered density gradient sedimentation and cocktail enzyme digestion treatment for isolation of single dermal papilla cells from follicular unit extraction harvesting human hair follicles.\",\"authors\":\"Junfei Huang, Jian Chen, Haoyuan Li, Zhexiang Fan, Yuyang Gan, Yangpeng Chen, Lijuan Du\",\"doi\":\"10.1186/s13287-024-04026-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hair follicles (HFs) are dynamic structures which are readily accessible within the skin that contain various pools of stem cells with broad regenerative potential, such as dermal papilla cells (DPCs), dermal sheath cells, and epithelial HF stem cells. DPCs act as signalling centres for HF regeneration. The current method for isolating human DPCs are inefficient. These methods struggle to obtain freshly isolated original DPCs and do not maintain the characteristics of DPCs effectively.</p><p><strong>Methods: </strong>In this study, two simple but more efficient methods were explored. Force-triggered density gradient sedimentation (FDGS) and cocktail enzyme digestion treatment (CEDT) were used to isolate purified DP spheres from human HFs, obtaining purified freshly isolated original DPCs from DP spheres. The expression profiles of isolated DPCs were tested, and gene expression of DPC-specific markers were analyzed using immunofluorescence staining, RT-qPCR and western blot.</p><p><strong>Results: </strong>The 10% Ficoll PM400 was determined as the optimal concentration for FDGS method. Primary DPCs, DSCs and HFSCs were isolated simultaneously using the FDGS and CEDT method. The expression profiles of fresh DPCs isolated using the FDGS and CEDT methods were similar to those of traditionally isolated DPCs. DP-specific markers were expressed at significantly higher levels in freshly isolated DPCs than in traditionally isolated DPCs.</p><p><strong>Conclusions: </strong>Compared to traditional methods, the presented laboratory protocols were able to isolate fresh DPCs with high efficiency, thereby improving their research potential.</p>\",\"PeriodicalId\":21876,\"journal\":{\"name\":\"Stem Cell Research & Therapy\",\"volume\":\"15 1\",\"pages\":\"416\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559101/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Research & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13287-024-04026-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-024-04026-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Force-triggered density gradient sedimentation and cocktail enzyme digestion treatment for isolation of single dermal papilla cells from follicular unit extraction harvesting human hair follicles.
Background: Hair follicles (HFs) are dynamic structures which are readily accessible within the skin that contain various pools of stem cells with broad regenerative potential, such as dermal papilla cells (DPCs), dermal sheath cells, and epithelial HF stem cells. DPCs act as signalling centres for HF regeneration. The current method for isolating human DPCs are inefficient. These methods struggle to obtain freshly isolated original DPCs and do not maintain the characteristics of DPCs effectively.
Methods: In this study, two simple but more efficient methods were explored. Force-triggered density gradient sedimentation (FDGS) and cocktail enzyme digestion treatment (CEDT) were used to isolate purified DP spheres from human HFs, obtaining purified freshly isolated original DPCs from DP spheres. The expression profiles of isolated DPCs were tested, and gene expression of DPC-specific markers were analyzed using immunofluorescence staining, RT-qPCR and western blot.
Results: The 10% Ficoll PM400 was determined as the optimal concentration for FDGS method. Primary DPCs, DSCs and HFSCs were isolated simultaneously using the FDGS and CEDT method. The expression profiles of fresh DPCs isolated using the FDGS and CEDT methods were similar to those of traditionally isolated DPCs. DP-specific markers were expressed at significantly higher levels in freshly isolated DPCs than in traditionally isolated DPCs.
Conclusions: Compared to traditional methods, the presented laboratory protocols were able to isolate fresh DPCs with high efficiency, thereby improving their research potential.
期刊介绍:
Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.