Ibrahim Shomope, Kelly M Percival, Nabil M Abdel Jabbar, Ghaleb A Husseini
{"title":"预测超声靶向脂质体的钙黄绿素释放:随机森林与支持向量机的比较分析。","authors":"Ibrahim Shomope, Kelly M Percival, Nabil M Abdel Jabbar, Ghaleb A Husseini","doi":"10.1177/15330338241296725","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study presents a comparative analysis of RF and SVM for predicting calcein release from ultrasound-triggered, targeted liposomes under varied low-frequency ultrasound (LFUS) power densities (6.2, 9, and 10 mW/cm<sup>2</sup>).</p><p><strong>Methods: </strong>Liposomes loaded with calcein and targeted with seven different moieties (cRGD, estrone, folate, Herceptin, hyaluronic acid, lactobionic acid, and transferrin) were synthesized using the thin-film hydration method. The liposomes were characterized using Dynamic Light Scattering and Bicinchoninic Acid assays. Extensive data collection and preprocessing were performed. RF and SVM models were trained and evaluated using mean absolute error (MAE), mean squared error (MSE), coefficient of determination (R²), and the a20 index as performance metrics.</p><p><strong>Results: </strong>RF consistently outperformed SVM, achieving R<sup>2</sup> scores above 0.96 across all power densities, particularly excelling at higher power densities and indicating a strong correlation with the actual data.</p><p><strong>Conclusion: </strong>RF outperforms SVM in drug release prediction, though both show strengths and apply based on specific prediction needs.</p>","PeriodicalId":22203,"journal":{"name":"Technology in Cancer Research & Treatment","volume":"23 ","pages":"15330338241296725"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561990/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting Calcein Release from Ultrasound-Targeted Liposomes: A Comparative Analysis of Random Forest and Support Vector Machine.\",\"authors\":\"Ibrahim Shomope, Kelly M Percival, Nabil M Abdel Jabbar, Ghaleb A Husseini\",\"doi\":\"10.1177/15330338241296725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study presents a comparative analysis of RF and SVM for predicting calcein release from ultrasound-triggered, targeted liposomes under varied low-frequency ultrasound (LFUS) power densities (6.2, 9, and 10 mW/cm<sup>2</sup>).</p><p><strong>Methods: </strong>Liposomes loaded with calcein and targeted with seven different moieties (cRGD, estrone, folate, Herceptin, hyaluronic acid, lactobionic acid, and transferrin) were synthesized using the thin-film hydration method. The liposomes were characterized using Dynamic Light Scattering and Bicinchoninic Acid assays. Extensive data collection and preprocessing were performed. RF and SVM models were trained and evaluated using mean absolute error (MAE), mean squared error (MSE), coefficient of determination (R²), and the a20 index as performance metrics.</p><p><strong>Results: </strong>RF consistently outperformed SVM, achieving R<sup>2</sup> scores above 0.96 across all power densities, particularly excelling at higher power densities and indicating a strong correlation with the actual data.</p><p><strong>Conclusion: </strong>RF outperforms SVM in drug release prediction, though both show strengths and apply based on specific prediction needs.</p>\",\"PeriodicalId\":22203,\"journal\":{\"name\":\"Technology in Cancer Research & Treatment\",\"volume\":\"23 \",\"pages\":\"15330338241296725\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561990/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology in Cancer Research & Treatment\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15330338241296725\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology in Cancer Research & Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15330338241296725","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Predicting Calcein Release from Ultrasound-Targeted Liposomes: A Comparative Analysis of Random Forest and Support Vector Machine.
Objective: This study presents a comparative analysis of RF and SVM for predicting calcein release from ultrasound-triggered, targeted liposomes under varied low-frequency ultrasound (LFUS) power densities (6.2, 9, and 10 mW/cm2).
Methods: Liposomes loaded with calcein and targeted with seven different moieties (cRGD, estrone, folate, Herceptin, hyaluronic acid, lactobionic acid, and transferrin) were synthesized using the thin-film hydration method. The liposomes were characterized using Dynamic Light Scattering and Bicinchoninic Acid assays. Extensive data collection and preprocessing were performed. RF and SVM models were trained and evaluated using mean absolute error (MAE), mean squared error (MSE), coefficient of determination (R²), and the a20 index as performance metrics.
Results: RF consistently outperformed SVM, achieving R2 scores above 0.96 across all power densities, particularly excelling at higher power densities and indicating a strong correlation with the actual data.
Conclusion: RF outperforms SVM in drug release prediction, though both show strengths and apply based on specific prediction needs.
期刊介绍:
Technology in Cancer Research & Treatment (TCRT) is a JCR-ranked, broad-spectrum, open access, peer-reviewed publication whose aim is to provide researchers and clinicians with a platform to share and discuss developments in the prevention, diagnosis, treatment, and monitoring of cancer.