Laixu Shang, Ping-Feng Xu, Na Shan, Man-Lai Tang, Qian-Zhen Zheng
{"title":"用于 M3PL 模型中潜在变量选择的改进 EMS 算法。","authors":"Laixu Shang, Ping-Feng Xu, Na Shan, Man-Lai Tang, Qian-Zhen Zheng","doi":"10.1177/01466216241291237","DOIUrl":null,"url":null,"abstract":"<p><p>One of the main concerns in multidimensional item response theory (MIRT) is to detect the relationship between items and latent traits, which can be treated as a latent variable selection problem. An attractive method for latent variable selection in multidimensional 2-parameter logistic (M2PL) model is to minimize the observed Bayesian information criterion (BIC) by the expectation model selection (EMS) algorithm. The EMS algorithm extends the EM algorithm and allows the updates of the model (e.g., the loading structure in MIRT) in the iterations along with the parameters under the model. As an extension of the M2PL model, the multidimensional 3-parameter logistic (M3PL) model introduces an additional guessing parameter which makes the latent variable selection more challenging. In this paper, a well-designed EMS algorithm, named improved EMS (IEMS), is proposed to accurately and efficiently detect the underlying true loading structure in the M3PL model, which also works for the M2PL model. In simulation studies, we compare the IEMS algorithm with several state-of-art methods and the IEMS is of competitiveness in terms of model recovery, estimation precision, and computational efficiency. The IEMS algorithm is illustrated by its application to two real data sets.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559968/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Improved EMS Algorithm for Latent Variable Selection in M3PL Model.\",\"authors\":\"Laixu Shang, Ping-Feng Xu, Na Shan, Man-Lai Tang, Qian-Zhen Zheng\",\"doi\":\"10.1177/01466216241291237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the main concerns in multidimensional item response theory (MIRT) is to detect the relationship between items and latent traits, which can be treated as a latent variable selection problem. An attractive method for latent variable selection in multidimensional 2-parameter logistic (M2PL) model is to minimize the observed Bayesian information criterion (BIC) by the expectation model selection (EMS) algorithm. The EMS algorithm extends the EM algorithm and allows the updates of the model (e.g., the loading structure in MIRT) in the iterations along with the parameters under the model. As an extension of the M2PL model, the multidimensional 3-parameter logistic (M3PL) model introduces an additional guessing parameter which makes the latent variable selection more challenging. In this paper, a well-designed EMS algorithm, named improved EMS (IEMS), is proposed to accurately and efficiently detect the underlying true loading structure in the M3PL model, which also works for the M2PL model. In simulation studies, we compare the IEMS algorithm with several state-of-art methods and the IEMS is of competitiveness in terms of model recovery, estimation precision, and computational efficiency. The IEMS algorithm is illustrated by its application to two real data sets.</p>\",\"PeriodicalId\":48300,\"journal\":{\"name\":\"Applied Psychological Measurement\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559968/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/01466216241291237\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PSYCHOLOGY, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216241291237","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
The Improved EMS Algorithm for Latent Variable Selection in M3PL Model.
One of the main concerns in multidimensional item response theory (MIRT) is to detect the relationship between items and latent traits, which can be treated as a latent variable selection problem. An attractive method for latent variable selection in multidimensional 2-parameter logistic (M2PL) model is to minimize the observed Bayesian information criterion (BIC) by the expectation model selection (EMS) algorithm. The EMS algorithm extends the EM algorithm and allows the updates of the model (e.g., the loading structure in MIRT) in the iterations along with the parameters under the model. As an extension of the M2PL model, the multidimensional 3-parameter logistic (M3PL) model introduces an additional guessing parameter which makes the latent variable selection more challenging. In this paper, a well-designed EMS algorithm, named improved EMS (IEMS), is proposed to accurately and efficiently detect the underlying true loading structure in the M3PL model, which also works for the M2PL model. In simulation studies, we compare the IEMS algorithm with several state-of-art methods and the IEMS is of competitiveness in terms of model recovery, estimation precision, and computational efficiency. The IEMS algorithm is illustrated by its application to two real data sets.
期刊介绍:
Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.