{"title":"通过选择性磷脂酸结合将细菌效应物质锚定在质膜上,从而调节宿主细胞信号。","authors":"Meng Wang, Qixiao Guan, Chunyan Wang, Lyubin Hu, Xueyan Hu, Menglin Xu, Yuhao Cai, Haoran Zhang, Qing Cao, Huiming Sheng, Xiaohui Wei, Jane E Koehler, Hongjing Dou, Ruo-Xu Gu, Congli Yuan","doi":"10.1371/journal.ppat.1012694","DOIUrl":null,"url":null,"abstract":"<p><p>Binding phospholipid is a simple, yet flexible, strategy for anchorage of bacterial effectors at cell membrane to manipulate host signaling responses. Phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-biphosphate are the only two phospholipid species known to direct bacterial effectors to establish inner leaflet localization at the plasma membrane. Here, selectivity of phosphatidic acid (PA) by bacterial effectors for the plasma membrane anchorage and its molecular entity was identified. C-terminal BID domain of Bartonella T4SS effectors (Beps) directed the plasma membrane localization of Beps in host cells through binding with PA. A hydrophobic segment of the 'HOOK' subdomain from BID is inserted into the bilayer to enhance the interaction of positively charged residues with the lipid headgroups. Mutations of a conserved arginine facilitating the electrostatic interaction, a conserved glycine maintaining the stability of the PA binding groove, and hydrophobic residues determining membrane insertion, prevented the anchorage of Beps at the plasma membrane. Disassociation from plasma membrane to cytosol attenuated the BepC capacity to induce stress fiber formation and cell fragmentation in host cells. The substitution of alanine with aspartic acid at the -1 position preceding the conserved arginine residue hindered BepD anchoring at the plasma membrane, a vital prerequisite for its ability to elicit IL-10 secretion in host macrophages. In conclusion, our findings reveal the PA-binding properties of bacterial effectors to establish plasma membrane localization and will shed light on the intricate mechanisms employed by bacterial effectors within host cells.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"20 11","pages":"e1012694"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556746/pdf/","citationCount":"0","resultStr":"{\"title\":\"Anchorage of bacterial effector at plasma membrane via selective phosphatidic acid binding to modulate host cell signaling.\",\"authors\":\"Meng Wang, Qixiao Guan, Chunyan Wang, Lyubin Hu, Xueyan Hu, Menglin Xu, Yuhao Cai, Haoran Zhang, Qing Cao, Huiming Sheng, Xiaohui Wei, Jane E Koehler, Hongjing Dou, Ruo-Xu Gu, Congli Yuan\",\"doi\":\"10.1371/journal.ppat.1012694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Binding phospholipid is a simple, yet flexible, strategy for anchorage of bacterial effectors at cell membrane to manipulate host signaling responses. Phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-biphosphate are the only two phospholipid species known to direct bacterial effectors to establish inner leaflet localization at the plasma membrane. Here, selectivity of phosphatidic acid (PA) by bacterial effectors for the plasma membrane anchorage and its molecular entity was identified. C-terminal BID domain of Bartonella T4SS effectors (Beps) directed the plasma membrane localization of Beps in host cells through binding with PA. A hydrophobic segment of the 'HOOK' subdomain from BID is inserted into the bilayer to enhance the interaction of positively charged residues with the lipid headgroups. Mutations of a conserved arginine facilitating the electrostatic interaction, a conserved glycine maintaining the stability of the PA binding groove, and hydrophobic residues determining membrane insertion, prevented the anchorage of Beps at the plasma membrane. Disassociation from plasma membrane to cytosol attenuated the BepC capacity to induce stress fiber formation and cell fragmentation in host cells. The substitution of alanine with aspartic acid at the -1 position preceding the conserved arginine residue hindered BepD anchoring at the plasma membrane, a vital prerequisite for its ability to elicit IL-10 secretion in host macrophages. In conclusion, our findings reveal the PA-binding properties of bacterial effectors to establish plasma membrane localization and will shed light on the intricate mechanisms employed by bacterial effectors within host cells.</p>\",\"PeriodicalId\":48999,\"journal\":{\"name\":\"PLoS Pathogens\",\"volume\":\"20 11\",\"pages\":\"e1012694\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556746/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.ppat.1012694\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012694","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
结合磷脂是一种简单而灵活的策略,可将细菌效应物固定在细胞膜上,从而操纵宿主的信号反应。磷脂酰肌醇 4-磷酸酯和磷脂酰肌醇 4,5-二磷酸是目前已知的唯一两种能引导细菌效应物在质膜上建立内叶定位的磷脂。本文鉴定了细菌效应物对磷脂酸(PA)质膜锚定的选择性及其分子实体。巴顿氏菌 T4SS 效应子(Beps)的 C 端 BID 结构域通过与 PA 结合引导 Beps 在宿主细胞内的质膜定位。BID 的 "HOOK "亚域的疏水片段插入双分子层,以增强带正电的残基与脂质头基的相互作用。对促进静电相互作用的保守精氨酸、维持 PA 结合槽稳定性的保守甘氨酸以及决定膜插入的疏水残基进行突变,可防止 Beps 在质膜上锚定。从质膜到细胞质的解离削弱了 BepC 在宿主细胞中诱导应力纤维形成和细胞破碎的能力。在保守的精氨酸残基之前的-1位上用天冬氨酸取代丙氨酸阻碍了BepD在质膜上的锚定,而这是其能够诱导宿主巨噬细胞分泌IL-10的重要前提。总之,我们的研究结果揭示了细菌效应物建立质膜定位的 PA 结合特性,并将揭示细菌效应物在宿主细胞内使用的复杂机制。
Anchorage of bacterial effector at plasma membrane via selective phosphatidic acid binding to modulate host cell signaling.
Binding phospholipid is a simple, yet flexible, strategy for anchorage of bacterial effectors at cell membrane to manipulate host signaling responses. Phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-biphosphate are the only two phospholipid species known to direct bacterial effectors to establish inner leaflet localization at the plasma membrane. Here, selectivity of phosphatidic acid (PA) by bacterial effectors for the plasma membrane anchorage and its molecular entity was identified. C-terminal BID domain of Bartonella T4SS effectors (Beps) directed the plasma membrane localization of Beps in host cells through binding with PA. A hydrophobic segment of the 'HOOK' subdomain from BID is inserted into the bilayer to enhance the interaction of positively charged residues with the lipid headgroups. Mutations of a conserved arginine facilitating the electrostatic interaction, a conserved glycine maintaining the stability of the PA binding groove, and hydrophobic residues determining membrane insertion, prevented the anchorage of Beps at the plasma membrane. Disassociation from plasma membrane to cytosol attenuated the BepC capacity to induce stress fiber formation and cell fragmentation in host cells. The substitution of alanine with aspartic acid at the -1 position preceding the conserved arginine residue hindered BepD anchoring at the plasma membrane, a vital prerequisite for its ability to elicit IL-10 secretion in host macrophages. In conclusion, our findings reveal the PA-binding properties of bacterial effectors to establish plasma membrane localization and will shed light on the intricate mechanisms employed by bacterial effectors within host cells.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.