细胞感应和迁移的生物力学模型

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Methods in Biomechanics and Biomedical Engineering Pub Date : 2024-11-13 DOI:10.1080/10255842.2024.2427112
Arnaud Chauvière, Ian Manifacier, Claude Verdier, Grégory Chagnon, Ibrahim Cheddadi, Nicolas Glade, Angélique Stéphanou
{"title":"细胞感应和迁移的生物力学模型","authors":"Arnaud Chauvière, Ian Manifacier, Claude Verdier, Grégory Chagnon, Ibrahim Cheddadi, Nicolas Glade, Angélique Stéphanou","doi":"10.1080/10255842.2024.2427112","DOIUrl":null,"url":null,"abstract":"<p><p>We developed an original computational model for cell deformation and migration capable of accounting for the cell sensitivity to the environment and its appropriate adaptation. This cell model is ultimately intended to be used to address tissue morphogenesis. Hence it has been designed to comply with four requirements: (1) the cell should be able to probe and sense its environment and respond accordingly; (2) the model should be easy to parametrize to adapt to different cell types; (3) the model should be able to extend to 3D cases; (4) simulations should be fast enough to integrate many interacting cells. The simulations carried out focused on two aspects: first, the general behaviour of the cell on a homogeneous substrate, as observed experimentally, for model validation. This enabled us to decipher the mechanisms by which the cell can migrate, highlighting respective influences of the adhesions lifetimes and their sensitivity to traction; second, it predicts the sensitivity of the cell to an anisotropic patterned substrate, in agreement with recently published experiments. The results show that mechanosensors simulated by the model make it possible to reproduce such experiments in terms of migration bias generated by the substrate anisotropy. Here again, the model provides a biomechanical explanation of this phenomenon, depending on cell-matrix interactions and adhesion maturation rate.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-19"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A biomechanical model for cell sensing and migration.\",\"authors\":\"Arnaud Chauvière, Ian Manifacier, Claude Verdier, Grégory Chagnon, Ibrahim Cheddadi, Nicolas Glade, Angélique Stéphanou\",\"doi\":\"10.1080/10255842.2024.2427112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We developed an original computational model for cell deformation and migration capable of accounting for the cell sensitivity to the environment and its appropriate adaptation. This cell model is ultimately intended to be used to address tissue morphogenesis. Hence it has been designed to comply with four requirements: (1) the cell should be able to probe and sense its environment and respond accordingly; (2) the model should be easy to parametrize to adapt to different cell types; (3) the model should be able to extend to 3D cases; (4) simulations should be fast enough to integrate many interacting cells. The simulations carried out focused on two aspects: first, the general behaviour of the cell on a homogeneous substrate, as observed experimentally, for model validation. This enabled us to decipher the mechanisms by which the cell can migrate, highlighting respective influences of the adhesions lifetimes and their sensitivity to traction; second, it predicts the sensitivity of the cell to an anisotropic patterned substrate, in agreement with recently published experiments. The results show that mechanosensors simulated by the model make it possible to reproduce such experiments in terms of migration bias generated by the substrate anisotropy. Here again, the model provides a biomechanical explanation of this phenomenon, depending on cell-matrix interactions and adhesion maturation rate.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-19\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2024.2427112\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2427112","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一个细胞变形和迁移的原创计算模型,该模型能够解释细胞对环境的敏感性及其适当的适应性。这一细胞模型最终将用于解决组织形态发生问题。因此,它的设计符合四项要求:(1)细胞应能探测和感知环境并做出相应反应;(2)模型应易于参数化,以适应不同的细胞类型;(3)模型应能扩展到三维情况;(4)模拟应足够快,以整合许多相互作用的细胞。模拟主要集中在两个方面:第一,实验观察到的细胞在均质基底上的一般行为,以验证模型。这使我们能够破译细胞迁移的机制,突出粘附寿命的影响及其对牵引力的敏感性;第二,它预测了细胞对各向异性图案基底的敏感性,这与最近发表的实验结果一致。结果表明,该模型模拟的机械传感器可以根据基底各向异性产生的迁移偏差重现此类实验。在此,该模型再次为这种现象提供了一种生物力学解释,它取决于细胞与基质的相互作用和粘附成熟率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A biomechanical model for cell sensing and migration.

We developed an original computational model for cell deformation and migration capable of accounting for the cell sensitivity to the environment and its appropriate adaptation. This cell model is ultimately intended to be used to address tissue morphogenesis. Hence it has been designed to comply with four requirements: (1) the cell should be able to probe and sense its environment and respond accordingly; (2) the model should be easy to parametrize to adapt to different cell types; (3) the model should be able to extend to 3D cases; (4) simulations should be fast enough to integrate many interacting cells. The simulations carried out focused on two aspects: first, the general behaviour of the cell on a homogeneous substrate, as observed experimentally, for model validation. This enabled us to decipher the mechanisms by which the cell can migrate, highlighting respective influences of the adhesions lifetimes and their sensitivity to traction; second, it predicts the sensitivity of the cell to an anisotropic patterned substrate, in agreement with recently published experiments. The results show that mechanosensors simulated by the model make it possible to reproduce such experiments in terms of migration bias generated by the substrate anisotropy. Here again, the model provides a biomechanical explanation of this phenomenon, depending on cell-matrix interactions and adhesion maturation rate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
期刊最新文献
The use of finite element models for backface deformation and body armour design: a systematic review. Significance of peripheral layer: the case of mucus flow through a ciliated tube using Rabinowitsch model. A high-fidelity biomechanical modeling framework for injury prediction during frontal car crash. Multivariable identification based MPC for closed-loop glucose regulation subject to individual variability. Research on MI EEG signal classification algorithm using multi-model fusion strategy coupling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1