2024 年度奖讲座:内源性生理机制是治疗肥胖症和 2 型糖尿病的基础。

IF 4.7 2区 医学 Q1 NEUROSCIENCES Journal of Physiology-London Pub Date : 2024-11-09 DOI:10.1113/JP287461
Jens Juul Holst
{"title":"2024 年度奖讲座:内源性生理机制是治疗肥胖症和 2 型糖尿病的基础。","authors":"Jens Juul Holst","doi":"10.1113/JP287461","DOIUrl":null,"url":null,"abstract":"<p><p>In 1964, it was proven that postprandial insulin secretion is largely regulated by gut hormones and, in 1973, it was proposed that a gut hormone would also regulate appetite and food intake. Several gut hormones were tested for metabolic actions with disappointing results until the discovery of the proglucagon derivative, glucagon-like peptide-1 (GLP-1). This peptide from the distal intestine has preserved activity on insulin secretion in people with type 2 diabetes and turned out to regulate both secretion and motility in the gastrointestinal tract and importantly, appetite and food intake, thus functioning as an efficient 'ileal brake' hormone. However, the natural hormone acts predominantly via sensory afferent systems and is extremely rapidly removed from the circulation by enzymatic degradation and renal elimination, and increasing the doses merely results in nausea and vomiting. Lipidation of analogs turned out to provide both stability and limit renal elimination, and very slow up-titration of dosing improves tolerance. Indeed, the most recent agonists may near-normalize glycaemic control in type 2 diabetes, may cause weight losses of up to 25% of body weight, and significantly reduce cardiovascular risk, effects that resemble those of bariatric surgery. Thus, a solution to one of the most serious health problems of modern civilization, the increased morbidity and mortality of the metabolic syndrome, may be addressed by mobilization of one of the body's own regulatory mechanisms.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Annual Prize Lecture 2024: Endogenous physiological mechanisms as basis for the treatment of obesity and type 2 diabetes.\",\"authors\":\"Jens Juul Holst\",\"doi\":\"10.1113/JP287461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In 1964, it was proven that postprandial insulin secretion is largely regulated by gut hormones and, in 1973, it was proposed that a gut hormone would also regulate appetite and food intake. Several gut hormones were tested for metabolic actions with disappointing results until the discovery of the proglucagon derivative, glucagon-like peptide-1 (GLP-1). This peptide from the distal intestine has preserved activity on insulin secretion in people with type 2 diabetes and turned out to regulate both secretion and motility in the gastrointestinal tract and importantly, appetite and food intake, thus functioning as an efficient 'ileal brake' hormone. However, the natural hormone acts predominantly via sensory afferent systems and is extremely rapidly removed from the circulation by enzymatic degradation and renal elimination, and increasing the doses merely results in nausea and vomiting. Lipidation of analogs turned out to provide both stability and limit renal elimination, and very slow up-titration of dosing improves tolerance. Indeed, the most recent agonists may near-normalize glycaemic control in type 2 diabetes, may cause weight losses of up to 25% of body weight, and significantly reduce cardiovascular risk, effects that resemble those of bariatric surgery. Thus, a solution to one of the most serious health problems of modern civilization, the increased morbidity and mortality of the metabolic syndrome, may be addressed by mobilization of one of the body's own regulatory mechanisms.</p>\",\"PeriodicalId\":50088,\"journal\":{\"name\":\"Journal of Physiology-London\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology-London\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/JP287461\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP287461","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

1964 年,研究证明餐后胰岛素分泌在很大程度上受肠道激素调节,1973 年,有人提出肠道激素也能调节食欲和食物摄入量。在发现胰高血糖素衍生物--胰高血糖素样肽-1(GLP-1)之前,人们对几种肠道激素的代谢作用进行了测试,但结果令人失望。这种来自远端肠道的肽保留了对 2 型糖尿病患者胰岛素分泌的活性,而且还能调节胃肠道的分泌和蠕动,更重要的是,还能调节食欲和食物摄入量,因此是一种有效的 "回肠制动 "激素。然而,天然激素主要通过感觉传入系统发挥作用,并通过酶降解和肾脏排泄迅速从血液循环中清除,增加剂量只会导致恶心和呕吐。事实证明,类似物的脂化处理既能提供稳定性,又能限制肾脏排泄,而且非常缓慢地增加剂量能提高耐受性。事实上,最新的激动剂可使 2 型糖尿病患者的血糖控制接近正常,体重最多可减轻 25%,并显著降低心血管风险,这些效果与减肥手术相似。因此,现代文明中最严重的健康问题之一,即代谢综合征导致的发病率和死亡率的增加,可以通过调动人体自身的一种调节机制来解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Annual Prize Lecture 2024: Endogenous physiological mechanisms as basis for the treatment of obesity and type 2 diabetes.

In 1964, it was proven that postprandial insulin secretion is largely regulated by gut hormones and, in 1973, it was proposed that a gut hormone would also regulate appetite and food intake. Several gut hormones were tested for metabolic actions with disappointing results until the discovery of the proglucagon derivative, glucagon-like peptide-1 (GLP-1). This peptide from the distal intestine has preserved activity on insulin secretion in people with type 2 diabetes and turned out to regulate both secretion and motility in the gastrointestinal tract and importantly, appetite and food intake, thus functioning as an efficient 'ileal brake' hormone. However, the natural hormone acts predominantly via sensory afferent systems and is extremely rapidly removed from the circulation by enzymatic degradation and renal elimination, and increasing the doses merely results in nausea and vomiting. Lipidation of analogs turned out to provide both stability and limit renal elimination, and very slow up-titration of dosing improves tolerance. Indeed, the most recent agonists may near-normalize glycaemic control in type 2 diabetes, may cause weight losses of up to 25% of body weight, and significantly reduce cardiovascular risk, effects that resemble those of bariatric surgery. Thus, a solution to one of the most serious health problems of modern civilization, the increased morbidity and mortality of the metabolic syndrome, may be addressed by mobilization of one of the body's own regulatory mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physiology-London
Journal of Physiology-London 医学-神经科学
CiteScore
9.70
自引率
7.30%
发文量
817
审稿时长
2 months
期刊介绍: The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew. The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.
期刊最新文献
Pannexin 1 and pannexin 3 differentially regulate the cancer cell properties of cutaneous squamous cell carcinoma. Bioelectronic block of stellate ganglia mitigates pacing-induced heterogeneous release of catecholamine and neuropeptide Y in the infarcted pig heart. Interleukin-1 type 1 receptor blockade attenuates the exaggerated exercise pressor reflex in male UC Davis type 2 diabetic mellitus rats. Prospective in silico trials identify combined SK and K2P channel block as an effective strategy for atrial fibrillation cardioversion. Purkinje cell ablation and Purkinje cell-specific deletion of Tsc1 in the developing cerebellum strengthen cerebellothalamic synapses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1