单细胞测序与转录组学以及体内和体外分析相结合,揭示了心肌缺血再灌注损伤中铁蛋白沉积的情况。

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY The FASEB Journal Pub Date : 2024-11-09 DOI:10.1096/fj.202401056R
Chongning Zhong, Hui Dong, Yuting Ma, Bingqi Zhuang, Hongyang Shi, Lan Hong
{"title":"单细胞测序与转录组学以及体内和体外分析相结合,揭示了心肌缺血再灌注损伤中铁蛋白沉积的情况。","authors":"Chongning Zhong,&nbsp;Hui Dong,&nbsp;Yuting Ma,&nbsp;Bingqi Zhuang,&nbsp;Hongyang Shi,&nbsp;Lan Hong","doi":"10.1096/fj.202401056R","DOIUrl":null,"url":null,"abstract":"<p>Myocardial ischemia-reperfusion injury (MIRI) is a significant risk factor for acute myocardial infarction and is closely associated with ferroptosis. This study aimed to identify key ferroptosis-related genes as potential diagnostic markers for MIRI and to explore their roles in immune infiltration and therapeutic targeting in myocardial tissue. We obtained single-cell RNA sequencing (scRNA-seq) and RNA-seq data on MIRI from the GEO database, applied Seurat and UMAP for data processing and clustering, and analyzed ligand-receptor interactions using CellPhoneDB. By scoring ferroptosis in cardiomyocytes, we identified differentially expressed genes and conducted GO and KEGG pathway analyses. A protein interaction network was then constructed using the STRING database, and seven key genes (Atp5h, Vdac2, Pkm, Cycs, Hspa8, Tpi1, Ldha) were identified through Lasso regression modeling, showing significant associations with immune responses. In vivo experiments in a mouse ischemia-reperfusion model confirmed the roles of these seven genes in MIRI via RT-qPCR. To further investigate the role of Hspa8 in ferroptosis and MIRI, siRNA knockdown experiments were performed in H9C2 rat cardiomyocytes, and its involvement in ferroptosis was validated by JC-1 staining and PCR analysis. This study reveals the importance of ferroptosis-related genes in MIRI through integrated bioinformatics and experimental approaches, offering new insights into diagnostic markers and immune-related therapeutic targets for MIRI.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"38 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202401056R","citationCount":"0","resultStr":"{\"title\":\"Single-cell sequencing combined with transcriptomics and in vivo and in vitro analysis reveals the landscape of ferroptosis in myocardial ischemia–reperfusion injury\",\"authors\":\"Chongning Zhong,&nbsp;Hui Dong,&nbsp;Yuting Ma,&nbsp;Bingqi Zhuang,&nbsp;Hongyang Shi,&nbsp;Lan Hong\",\"doi\":\"10.1096/fj.202401056R\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Myocardial ischemia-reperfusion injury (MIRI) is a significant risk factor for acute myocardial infarction and is closely associated with ferroptosis. This study aimed to identify key ferroptosis-related genes as potential diagnostic markers for MIRI and to explore their roles in immune infiltration and therapeutic targeting in myocardial tissue. We obtained single-cell RNA sequencing (scRNA-seq) and RNA-seq data on MIRI from the GEO database, applied Seurat and UMAP for data processing and clustering, and analyzed ligand-receptor interactions using CellPhoneDB. By scoring ferroptosis in cardiomyocytes, we identified differentially expressed genes and conducted GO and KEGG pathway analyses. A protein interaction network was then constructed using the STRING database, and seven key genes (Atp5h, Vdac2, Pkm, Cycs, Hspa8, Tpi1, Ldha) were identified through Lasso regression modeling, showing significant associations with immune responses. In vivo experiments in a mouse ischemia-reperfusion model confirmed the roles of these seven genes in MIRI via RT-qPCR. To further investigate the role of Hspa8 in ferroptosis and MIRI, siRNA knockdown experiments were performed in H9C2 rat cardiomyocytes, and its involvement in ferroptosis was validated by JC-1 staining and PCR analysis. This study reveals the importance of ferroptosis-related genes in MIRI through integrated bioinformatics and experimental approaches, offering new insights into diagnostic markers and immune-related therapeutic targets for MIRI.</p>\",\"PeriodicalId\":50455,\"journal\":{\"name\":\"The FASEB Journal\",\"volume\":\"38 21\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202401056R\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FASEB Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1096/fj.202401056R\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202401056R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

心肌缺血再灌注损伤(MIRI)是急性心肌梗死的重要危险因素,与铁蛋白沉积密切相关。本研究旨在确定与铁蛋白沉积相关的关键基因,作为 MIRI 的潜在诊断标志物,并探索它们在心肌组织免疫浸润和治疗靶向中的作用。我们从 GEO 数据库中获得了 MIRI 的单细胞 RNA 测序(scRNA-seq)和 RNA-seq 数据,应用 Seurat 和 UMAP 进行了数据处理和聚类,并使用 CellPhoneDB 分析了配体与受体的相互作用。通过对心肌细胞中的铁突变进行评分,我们确定了差异表达基因,并进行了 GO 和 KEGG 通路分析。然后利用 STRING 数据库构建了蛋白质相互作用网络,并通过 Lasso 回归建模确定了七个关键基因(Atp5h、Vdac2、Pkm、Cycs、Hspa8、Tpi1、Ldha),这些基因与免疫反应有显著关联。在小鼠缺血再灌注模型中进行的体内实验通过 RT-qPCR 证实了这七个基因在 MIRI 中的作用。为了进一步研究 Hspa8 在铁凋亡和 MIRI 中的作用,在 H9C2 大鼠心肌细胞中进行了 siRNA 敲除实验,并通过 JC-1 染色和 PCR 分析验证了其在铁凋亡中的参与。这项研究通过综合生物信息学和实验方法揭示了铁蛋白沉积相关基因在 MIRI 中的重要性,为 MIRI 的诊断标志物和免疫相关治疗靶点提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Single-cell sequencing combined with transcriptomics and in vivo and in vitro analysis reveals the landscape of ferroptosis in myocardial ischemia–reperfusion injury

Myocardial ischemia-reperfusion injury (MIRI) is a significant risk factor for acute myocardial infarction and is closely associated with ferroptosis. This study aimed to identify key ferroptosis-related genes as potential diagnostic markers for MIRI and to explore their roles in immune infiltration and therapeutic targeting in myocardial tissue. We obtained single-cell RNA sequencing (scRNA-seq) and RNA-seq data on MIRI from the GEO database, applied Seurat and UMAP for data processing and clustering, and analyzed ligand-receptor interactions using CellPhoneDB. By scoring ferroptosis in cardiomyocytes, we identified differentially expressed genes and conducted GO and KEGG pathway analyses. A protein interaction network was then constructed using the STRING database, and seven key genes (Atp5h, Vdac2, Pkm, Cycs, Hspa8, Tpi1, Ldha) were identified through Lasso regression modeling, showing significant associations with immune responses. In vivo experiments in a mouse ischemia-reperfusion model confirmed the roles of these seven genes in MIRI via RT-qPCR. To further investigate the role of Hspa8 in ferroptosis and MIRI, siRNA knockdown experiments were performed in H9C2 rat cardiomyocytes, and its involvement in ferroptosis was validated by JC-1 staining and PCR analysis. This study reveals the importance of ferroptosis-related genes in MIRI through integrated bioinformatics and experimental approaches, offering new insights into diagnostic markers and immune-related therapeutic targets for MIRI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The FASEB Journal
The FASEB Journal 生物-生化与分子生物学
CiteScore
9.20
自引率
2.10%
发文量
6243
审稿时长
3 months
期刊介绍: The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.
期刊最新文献
Bone marrow mesenchymal stem cell-derived exosomal miR-181a-5p promotes M2 macrophage polarization to alleviate acute pancreatitis through ZEB2-mediated RACK1 ubiquitination. The central role of creatine and polyamines in fetal growth restriction. The AMPK allosteric activator MK-8722 improves the histology and spliceopathy in myotonic dystrophy type 1 (DM1) skeletal muscle CD11b deficiency attenuates the ischemia/reperfusion-induced AKI-to-CKD process by regulating macrophage polarization The impact of circulating nucleosomes on inflammation in acute lung injury
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1