Yeji Kim, Taehwa Choi, Seohyeon Park, Sangbum Choi, Dipankar Bandyopadhyay
{"title":"使用部分区间删失数据的反加权定量回归","authors":"Yeji Kim, Taehwa Choi, Seohyeon Park, Sangbum Choi, Dipankar Bandyopadhyay","doi":"10.1002/bimj.70001","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology, specifically tailored for data sets featuring partially interval-censored data. Such data sets, often encountered in HIV/AIDS and cancer biomedical research, may include doubly censored (DC) and partly interval-censored (PIC) endpoints. DC responses involve either left-censoring or right-censoring alongside some exact failure time observations, while PIC responses are subject to interval-censoring. Despite the existence of complex estimating techniques for interval-censored quantile regression, we propose a simple and intuitive IPCW-based method, easily implementable by assigning suitable inverse-probability weights to subjects with exact failure time observations. The resulting estimator exhibits asymptotic properties, such as uniform consistency and weak convergence, and we explore an augmented-IPCW (AIPCW) approach to enhance efficiency. In addition, our method can be adapted for multivariate partially interval-censored data. Simulation studies demonstrate the new procedure's strong finite-sample performance. We illustrate the practical application of our approach through an analysis of progression-free survival endpoints in a phase III clinical trial focusing on metastatic colorectal cancer.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 8","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70001","citationCount":"0","resultStr":"{\"title\":\"Inverse-Weighted Quantile Regression With Partially Interval-Censored Data\",\"authors\":\"Yeji Kim, Taehwa Choi, Seohyeon Park, Sangbum Choi, Dipankar Bandyopadhyay\",\"doi\":\"10.1002/bimj.70001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology, specifically tailored for data sets featuring partially interval-censored data. Such data sets, often encountered in HIV/AIDS and cancer biomedical research, may include doubly censored (DC) and partly interval-censored (PIC) endpoints. DC responses involve either left-censoring or right-censoring alongside some exact failure time observations, while PIC responses are subject to interval-censoring. Despite the existence of complex estimating techniques for interval-censored quantile regression, we propose a simple and intuitive IPCW-based method, easily implementable by assigning suitable inverse-probability weights to subjects with exact failure time observations. The resulting estimator exhibits asymptotic properties, such as uniform consistency and weak convergence, and we explore an augmented-IPCW (AIPCW) approach to enhance efficiency. In addition, our method can be adapted for multivariate partially interval-censored data. Simulation studies demonstrate the new procedure's strong finite-sample performance. We illustrate the practical application of our approach through an analysis of progression-free survival endpoints in a phase III clinical trial focusing on metastatic colorectal cancer.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"66 8\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70001\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70001\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70001","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种利用反删失概率加权(IPCW)方法估计删失量回归的新方法,该方法专门针对具有部分区间删失数据的数据集。此类数据集在艾滋病和癌症生物医学研究中经常遇到,可能包括双重删减(DC)和部分区间删减(PIC)终点。双删失反应涉及左删失或右删失以及一些精确的失败时间观测,而部分区间删失反应则受区间删失的影响。尽管存在复杂的区间校正量子回归估计技术,但我们提出了一种简单直观的基于 IPCW 的方法,通过为具有确切故障时间观测值的受试者分配合适的反概率权重,该方法很容易实现。由此产生的估计器具有渐近特性,如均匀一致性和弱收敛性,我们还探索了一种增强型 IPCW(AIPCW)方法来提高效率。此外,我们的方法还适用于多变量部分区间删失数据。仿真研究表明,新方法具有很强的有限样本性能。我们通过分析一项以转移性结直肠癌为重点的 III 期临床试验中的无进展生存终点来说明我们的方法的实际应用。
Inverse-Weighted Quantile Regression With Partially Interval-Censored Data
This paper introduces a novel approach to estimating censored quantile regression using inverse probability of censoring weighted (IPCW) methodology, specifically tailored for data sets featuring partially interval-censored data. Such data sets, often encountered in HIV/AIDS and cancer biomedical research, may include doubly censored (DC) and partly interval-censored (PIC) endpoints. DC responses involve either left-censoring or right-censoring alongside some exact failure time observations, while PIC responses are subject to interval-censoring. Despite the existence of complex estimating techniques for interval-censored quantile regression, we propose a simple and intuitive IPCW-based method, easily implementable by assigning suitable inverse-probability weights to subjects with exact failure time observations. The resulting estimator exhibits asymptotic properties, such as uniform consistency and weak convergence, and we explore an augmented-IPCW (AIPCW) approach to enhance efficiency. In addition, our method can be adapted for multivariate partially interval-censored data. Simulation studies demonstrate the new procedure's strong finite-sample performance. We illustrate the practical application of our approach through an analysis of progression-free survival endpoints in a phase III clinical trial focusing on metastatic colorectal cancer.
期刊介绍:
Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.