Seongpyo Lee, Do-Hyung Lee, Jin-Pyo Lee, Joo-Hui Han
{"title":"瑞舒伐他汀通过抑制血管平滑肌细胞中的 Akt/mTOR 轴激活自噬。","authors":"Seongpyo Lee, Do-Hyung Lee, Jin-Pyo Lee, Joo-Hui Han","doi":"10.4196/kjpp.24.284","DOIUrl":null,"url":null,"abstract":"<p><p>The proliferation and migration of vascular smooth muscle cells (VSMCs) are key contributors to the development of atherosclerosis and restenosis. We investigated the impact of rosuvastatin (RSV) on platelet-derived growth factor (PDGF)-BB-induced proliferation and migration of VSMCs, with a focus on the Akt/mTOR-autophagy signaling pathways. The cytotoxicity of RSV was assessed using MTT and annexin V staining, while the proliferation and migration capabilities of PDGF-BB-induced VSMCs were evaluated using MTT and cell migration assays. Confocal microscopy was employed to examine autophagic cell images, and protein expressions were analyzed via Western blotting. Our key findings revealed that RSV inhibited PDGF-BB-induced proliferation and migration of VSMCs, significantly reducing the expression of proliferating cell nuclear antigen and matrix metalloproteinase-2, which are crucial for these processes. RSV also enhanced autophagy in PDGF-BB-stimulated cells by inducing the maturation of microtubule-associated protein light chain 3 and increasing the expression of Beclin-1, autophagy related (Atg)3, Atg5, and Atg7. The regulatory effects of RSV on PDGF-BB-induced autophagy, proliferation, and migration were associated with the suppression of the Akt/mTOR signaling pathway. These findings suggest that RSV may have potential therapeutic benefits in preventing and treating vascular diseases by targeting the Akt/mTOR pathway and inducing autophagy.</p>","PeriodicalId":54746,"journal":{"name":"Korean Journal of Physiology & Pharmacology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rosuvastatin activates autophagy via inhibition of the Akt/mTOR axis in vascular smooth muscle cells.\",\"authors\":\"Seongpyo Lee, Do-Hyung Lee, Jin-Pyo Lee, Joo-Hui Han\",\"doi\":\"10.4196/kjpp.24.284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The proliferation and migration of vascular smooth muscle cells (VSMCs) are key contributors to the development of atherosclerosis and restenosis. We investigated the impact of rosuvastatin (RSV) on platelet-derived growth factor (PDGF)-BB-induced proliferation and migration of VSMCs, with a focus on the Akt/mTOR-autophagy signaling pathways. The cytotoxicity of RSV was assessed using MTT and annexin V staining, while the proliferation and migration capabilities of PDGF-BB-induced VSMCs were evaluated using MTT and cell migration assays. Confocal microscopy was employed to examine autophagic cell images, and protein expressions were analyzed via Western blotting. Our key findings revealed that RSV inhibited PDGF-BB-induced proliferation and migration of VSMCs, significantly reducing the expression of proliferating cell nuclear antigen and matrix metalloproteinase-2, which are crucial for these processes. RSV also enhanced autophagy in PDGF-BB-stimulated cells by inducing the maturation of microtubule-associated protein light chain 3 and increasing the expression of Beclin-1, autophagy related (Atg)3, Atg5, and Atg7. The regulatory effects of RSV on PDGF-BB-induced autophagy, proliferation, and migration were associated with the suppression of the Akt/mTOR signaling pathway. These findings suggest that RSV may have potential therapeutic benefits in preventing and treating vascular diseases by targeting the Akt/mTOR pathway and inducing autophagy.</p>\",\"PeriodicalId\":54746,\"journal\":{\"name\":\"Korean Journal of Physiology & Pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Korean Journal of Physiology & Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4196/kjpp.24.284\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Physiology & Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4196/kjpp.24.284","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Rosuvastatin activates autophagy via inhibition of the Akt/mTOR axis in vascular smooth muscle cells.
The proliferation and migration of vascular smooth muscle cells (VSMCs) are key contributors to the development of atherosclerosis and restenosis. We investigated the impact of rosuvastatin (RSV) on platelet-derived growth factor (PDGF)-BB-induced proliferation and migration of VSMCs, with a focus on the Akt/mTOR-autophagy signaling pathways. The cytotoxicity of RSV was assessed using MTT and annexin V staining, while the proliferation and migration capabilities of PDGF-BB-induced VSMCs were evaluated using MTT and cell migration assays. Confocal microscopy was employed to examine autophagic cell images, and protein expressions were analyzed via Western blotting. Our key findings revealed that RSV inhibited PDGF-BB-induced proliferation and migration of VSMCs, significantly reducing the expression of proliferating cell nuclear antigen and matrix metalloproteinase-2, which are crucial for these processes. RSV also enhanced autophagy in PDGF-BB-stimulated cells by inducing the maturation of microtubule-associated protein light chain 3 and increasing the expression of Beclin-1, autophagy related (Atg)3, Atg5, and Atg7. The regulatory effects of RSV on PDGF-BB-induced autophagy, proliferation, and migration were associated with the suppression of the Akt/mTOR signaling pathway. These findings suggest that RSV may have potential therapeutic benefits in preventing and treating vascular diseases by targeting the Akt/mTOR pathway and inducing autophagy.
期刊介绍:
The Korean Journal of Physiology & Pharmacology (Korean J. Physiol. Pharmacol., KJPP) is the official journal of both the Korean Physiological Society (KPS) and the Korean Society of Pharmacology (KSP). The journal launched in 1997 and is published bi-monthly in English. KJPP publishes original, peer-reviewed, scientific research-based articles that report successful advances in physiology and pharmacology. KJPP welcomes the submission of all original research articles in the field of physiology and pharmacology, especially the new and innovative findings. The scope of researches includes the action mechanism, pharmacological effect, utilization, and interaction of chemicals with biological system as well as the development of new drug targets. Theoretical articles that use computational models for further understanding of the physiological or pharmacological processes are also welcomed. Investigative translational research articles on human disease with an emphasis on physiology or pharmacology are also invited. KJPP does not publish work on the actions of crude biological extracts of either unknown chemical composition (e.g. unpurified and unvalidated) or unknown concentration. Reviews are normally commissioned, but consideration will be given to unsolicited contributions. All papers accepted for publication in KJPP will appear simultaneously in the printed Journal and online.