具有竞争风险的治愈率数据的缺陷回归模型。

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY Journal of Biopharmaceutical Statistics Pub Date : 2024-11-14 DOI:10.1080/10543406.2024.2424838
K Silpa, E P Sreedevi, P G Sankaran
{"title":"具有竞争风险的治愈率数据的缺陷回归模型。","authors":"K Silpa, E P Sreedevi, P G Sankaran","doi":"10.1080/10543406.2024.2424838","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we propose a novel method for the analysis of cure rate data with competing risks using defective distributions. We develop two defective regression models for the analysis of competing risk data subjected to random right censoring. The proposed models enable us to estimate the cure fraction directly from the model. Simultaneously, we also estimate the regression parameters corresponding to each cause of failure using the method of maximum likelihood. We conduct a simulation study to evaluate the finite sample performance of the proposed estimators. The practical usefulness of the procedures is illustrated using two real-life data sets.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-17"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defective regression models for cure rate data with competing risks.\",\"authors\":\"K Silpa, E P Sreedevi, P G Sankaran\",\"doi\":\"10.1080/10543406.2024.2424838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we propose a novel method for the analysis of cure rate data with competing risks using defective distributions. We develop two defective regression models for the analysis of competing risk data subjected to random right censoring. The proposed models enable us to estimate the cure fraction directly from the model. Simultaneously, we also estimate the regression parameters corresponding to each cause of failure using the method of maximum likelihood. We conduct a simulation study to evaluate the finite sample performance of the proposed estimators. The practical usefulness of the procedures is illustrated using two real-life data sets.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2024.2424838\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2424838","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用缺陷分布分析具有竞争风险的治愈率数据的新方法。我们建立了两个缺陷回归模型,用于分析随机右删减的竞争风险数据。通过所建模型,我们可以直接从模型中估算出治愈率。同时,我们还使用最大似然法估算了与每个故障原因相对应的回归参数。我们进行了一项模拟研究,以评估所提出的估计器的有限样本性能。我们使用两个真实数据集说明了这些程序的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Defective regression models for cure rate data with competing risks.

In this paper, we propose a novel method for the analysis of cure rate data with competing risks using defective distributions. We develop two defective regression models for the analysis of competing risk data subjected to random right censoring. The proposed models enable us to estimate the cure fraction directly from the model. Simultaneously, we also estimate the regression parameters corresponding to each cause of failure using the method of maximum likelihood. We conduct a simulation study to evaluate the finite sample performance of the proposed estimators. The practical usefulness of the procedures is illustrated using two real-life data sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
期刊最新文献
Latent class analysis of post-acute sequelae of SARS-CoV-2 infection. Machine learning approach for detection of MACE events within clinical trial data. Statistical operating characteristics of current early phase dose finding designs with toxicity and efficacy in oncology. Defective regression models for cure rate data with competing risks. An investigation to improve a nonlinear mixed-effects approach for EC50 estimation based on multi-donor dose-response data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1