{"title":"Celludinone C,一种从纤维素溶解塔拉酵母菌 BF-0307 中分离出来的新型二氢异苯并呋喃。","authors":"Reiko Seki, Kenichiro Nagai, Keisuke Kobayashi, Satoru Shigeno, Tatsuya Shirahata, Yoshinori Kobayashi, Taichi Ohshiro, Hiroshi Tomoda","doi":"10.1038/s41429-024-00785-5","DOIUrl":null,"url":null,"abstract":"<p><p>Celludinones A and B, isolated from the fungus Talaromyces cellulolyticus BF-0307, were inhibitors of sterol O-acyltransferase (SOAT). Further searches for their congeners in the culture broth of the fungus by LC/UV and LC/MS analysis resulted in the discovery of four structurally related compounds, including a new dihydroisobenzofuran named celludinone C (1). The structure of 1, including its absolute stereochemistry, was elucidated by 1D/2D NMR and electronic circular dichroism (ECD) spectra. All of these compounds inhibited both SOAT1 and 2, with IC<sub>50</sub> values ranging from 8.5 to 30 µM.</p>","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Celludinone C, a new dihydroisobenzofuran isolated from Talaromyces cellulolyticus BF-0307.\",\"authors\":\"Reiko Seki, Kenichiro Nagai, Keisuke Kobayashi, Satoru Shigeno, Tatsuya Shirahata, Yoshinori Kobayashi, Taichi Ohshiro, Hiroshi Tomoda\",\"doi\":\"10.1038/s41429-024-00785-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Celludinones A and B, isolated from the fungus Talaromyces cellulolyticus BF-0307, were inhibitors of sterol O-acyltransferase (SOAT). Further searches for their congeners in the culture broth of the fungus by LC/UV and LC/MS analysis resulted in the discovery of four structurally related compounds, including a new dihydroisobenzofuran named celludinone C (1). The structure of 1, including its absolute stereochemistry, was elucidated by 1D/2D NMR and electronic circular dichroism (ECD) spectra. All of these compounds inhibited both SOAT1 and 2, with IC<sub>50</sub> values ranging from 8.5 to 30 µM.</p>\",\"PeriodicalId\":54884,\"journal\":{\"name\":\"Journal of Antibiotics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Antibiotics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41429-024-00785-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41429-024-00785-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Celludinone C, a new dihydroisobenzofuran isolated from Talaromyces cellulolyticus BF-0307.
Celludinones A and B, isolated from the fungus Talaromyces cellulolyticus BF-0307, were inhibitors of sterol O-acyltransferase (SOAT). Further searches for their congeners in the culture broth of the fungus by LC/UV and LC/MS analysis resulted in the discovery of four structurally related compounds, including a new dihydroisobenzofuran named celludinone C (1). The structure of 1, including its absolute stereochemistry, was elucidated by 1D/2D NMR and electronic circular dichroism (ECD) spectra. All of these compounds inhibited both SOAT1 and 2, with IC50 values ranging from 8.5 to 30 µM.
期刊介绍:
The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Discovery of new antibiotics and related types of biologically active substances
Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances
Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances
Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances
Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.