Chaoyue Sun, Yanjun Li, Simone Marini, Alberto Riva, Dapeng Oliver Wu, Ruogu Fang, Marco Salemi, Brittany Rife Magalis
{"title":"以系统发育为基础的图深度学习对传染病流行中的动态传播集群进行分类。","authors":"Chaoyue Sun, Yanjun Li, Simone Marini, Alberto Riva, Dapeng Oliver Wu, Ruogu Fang, Marco Salemi, Brittany Rife Magalis","doi":"10.1093/bioadv/vbae158","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>In the midst of an outbreak, identification of groups of individuals that represent risk for transmission of the pathogen under investigation is critical to public health efforts. Dynamic transmission patterns within these clusters, whether it be the result of changes at the level of the virus (e.g. infectivity) or host (e.g. vaccination), are critical in strategizing public health interventions, particularly when resources are limited. Phylogenetic trees are widely used not only in the detection of transmission clusters, but the topological shape of the branches within can be useful sources of information regarding the dynamics of the represented population.</p><p><strong>Results: </strong>We evaluated the limitation of existing tree shape metrics when dealing with dynamic transmission clusters and propose instead a phylogeny-based deep learning system -<i>DeepDynaTree</i>- for dynamic classification. Comprehensive experiments carried out on a variety of simulated epidemic growth models and HIV epidemic data indicate that this graph deep learning approach is effective, robust, and informative for cluster dynamic prediction. Our results confirm that <i>DeepDynaTree</i> is a promising tool for transmission cluster characterization that can be modified to address the existing limitations and deficiencies in knowledge regarding the dynamics of transmission trajectories for groups at risk of pathogen infection.</p><p><strong>Availability and implementation: </strong><i>DeepDynaTree</i> is available under an MIT Licence in https://github.com/salemilab/DeepDynaTree.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae158"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552518/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phylogenetic-informed graph deep learning to classify dynamic transmission clusters in infectious disease epidemics.\",\"authors\":\"Chaoyue Sun, Yanjun Li, Simone Marini, Alberto Riva, Dapeng Oliver Wu, Ruogu Fang, Marco Salemi, Brittany Rife Magalis\",\"doi\":\"10.1093/bioadv/vbae158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>In the midst of an outbreak, identification of groups of individuals that represent risk for transmission of the pathogen under investigation is critical to public health efforts. Dynamic transmission patterns within these clusters, whether it be the result of changes at the level of the virus (e.g. infectivity) or host (e.g. vaccination), are critical in strategizing public health interventions, particularly when resources are limited. Phylogenetic trees are widely used not only in the detection of transmission clusters, but the topological shape of the branches within can be useful sources of information regarding the dynamics of the represented population.</p><p><strong>Results: </strong>We evaluated the limitation of existing tree shape metrics when dealing with dynamic transmission clusters and propose instead a phylogeny-based deep learning system -<i>DeepDynaTree</i>- for dynamic classification. Comprehensive experiments carried out on a variety of simulated epidemic growth models and HIV epidemic data indicate that this graph deep learning approach is effective, robust, and informative for cluster dynamic prediction. Our results confirm that <i>DeepDynaTree</i> is a promising tool for transmission cluster characterization that can be modified to address the existing limitations and deficiencies in knowledge regarding the dynamics of transmission trajectories for groups at risk of pathogen infection.</p><p><strong>Availability and implementation: </strong><i>DeepDynaTree</i> is available under an MIT Licence in https://github.com/salemilab/DeepDynaTree.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"4 1\",\"pages\":\"vbae158\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552518/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbae158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
动机:在疫情爆发期间,确定哪些人群有传播所调查病原体的风险对公共卫生工作至关重要。无论是病毒水平(如传染性)还是宿主水平(如疫苗接种)的变化所导致的这些群组内的动态传播模式,对于制定公共卫生干预战略都至关重要,尤其是在资源有限的情况下。系统发生树不仅被广泛用于检测传播集群,而且其内部分支的拓扑形状也是有关所代表种群动态的有用信息来源:我们评估了现有树形指标在处理动态传播集群时的局限性,并提出了一种基于系统发育的深度学习系统--DeepDynaTree--用于动态分类。在各种模拟流行病增长模型和 HIV 流行病数据上进行的综合实验表明,这种图深度学习方法对于集群动态预测是有效、稳健和有参考价值的。我们的研究结果证实,DeepDynaTree 是一种很有前途的传播集群特征描述工具,它可以进行修改,以解决现有的局限性和病原体感染风险群体传播轨迹动态知识的不足:DeepDynaTree以MIT许可在https://github.com/salemilab/DeepDynaTree。
Phylogenetic-informed graph deep learning to classify dynamic transmission clusters in infectious disease epidemics.
Motivation: In the midst of an outbreak, identification of groups of individuals that represent risk for transmission of the pathogen under investigation is critical to public health efforts. Dynamic transmission patterns within these clusters, whether it be the result of changes at the level of the virus (e.g. infectivity) or host (e.g. vaccination), are critical in strategizing public health interventions, particularly when resources are limited. Phylogenetic trees are widely used not only in the detection of transmission clusters, but the topological shape of the branches within can be useful sources of information regarding the dynamics of the represented population.
Results: We evaluated the limitation of existing tree shape metrics when dealing with dynamic transmission clusters and propose instead a phylogeny-based deep learning system -DeepDynaTree- for dynamic classification. Comprehensive experiments carried out on a variety of simulated epidemic growth models and HIV epidemic data indicate that this graph deep learning approach is effective, robust, and informative for cluster dynamic prediction. Our results confirm that DeepDynaTree is a promising tool for transmission cluster characterization that can be modified to address the existing limitations and deficiencies in knowledge regarding the dynamics of transmission trajectories for groups at risk of pathogen infection.
Availability and implementation: DeepDynaTree is available under an MIT Licence in https://github.com/salemilab/DeepDynaTree.