{"title":"解码 FOXP3 在食管癌中的作用:基本机制和治疗意义。","authors":"Yuanyuan Wang, Lei Xue","doi":"10.1016/j.bbcan.2024.189211","DOIUrl":null,"url":null,"abstract":"<div><div>Esophageal cancer is a significant contributor to cancer-related mortality, and its poor prognosis is primarily attributed to the aggressive nature of the tumor and challenges in early detection. Currently, there are no ideal drugs developed for treatment, making it crucial to explore potential biomarkers and molecular targets for esophageal cancer. FOXP3, as a transcription factor and major regulator of regulatory T cells, not only plays a role in promoting or inhibiting tumor development in various types of cancer cells including esophageal cancer cells but also influences the function of Treg cells by regulating the expression of multiple genes. This paper provides an in-depth discussion on the functional properties, regulatory mechanisms, key signaling pathways, as well as the role and potential application of FOXP3 in treating esophageal cancer. Furthermore, it comprehensively analyzes the complex role of this transcription factor within the tumor immune microenvironment with an aim to aid in developing new potential targets for esophageal cancer treatment.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1879 6","pages":"Article 189211"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding the role of FOXP3 in esophageal cancer: Underlying mechanisms and therapeutic implications\",\"authors\":\"Yuanyuan Wang, Lei Xue\",\"doi\":\"10.1016/j.bbcan.2024.189211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Esophageal cancer is a significant contributor to cancer-related mortality, and its poor prognosis is primarily attributed to the aggressive nature of the tumor and challenges in early detection. Currently, there are no ideal drugs developed for treatment, making it crucial to explore potential biomarkers and molecular targets for esophageal cancer. FOXP3, as a transcription factor and major regulator of regulatory T cells, not only plays a role in promoting or inhibiting tumor development in various types of cancer cells including esophageal cancer cells but also influences the function of Treg cells by regulating the expression of multiple genes. This paper provides an in-depth discussion on the functional properties, regulatory mechanisms, key signaling pathways, as well as the role and potential application of FOXP3 in treating esophageal cancer. Furthermore, it comprehensively analyzes the complex role of this transcription factor within the tumor immune microenvironment with an aim to aid in developing new potential targets for esophageal cancer treatment.</div></div>\",\"PeriodicalId\":8782,\"journal\":{\"name\":\"Biochimica et biophysica acta. Reviews on cancer\",\"volume\":\"1879 6\",\"pages\":\"Article 189211\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Reviews on cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304419X24001422\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Reviews on cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304419X24001422","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
食管癌是导致癌症相关死亡率的一个重要因素,其预后不良的主要原因是肿瘤的侵袭性和早期检测方面的挑战。目前还没有理想的治疗药物,因此探索食管癌的潜在生物标志物和分子靶点至关重要。FOXP3 作为转录因子和调节性 T 细胞的主要调控因子,不仅在促进或抑制包括食管癌细胞在内的各类癌细胞的肿瘤发生发展中发挥作用,还通过调控多种基因的表达影响 Treg 细胞的功能。本文深入探讨了 FOXP3 的功能特性、调控机制、关键信号通路以及在食管癌治疗中的作用和潜在应用。此外,它还全面分析了该转录因子在肿瘤免疫微环境中的复杂作用,旨在帮助开发食管癌治疗的新潜在靶点。
Decoding the role of FOXP3 in esophageal cancer: Underlying mechanisms and therapeutic implications
Esophageal cancer is a significant contributor to cancer-related mortality, and its poor prognosis is primarily attributed to the aggressive nature of the tumor and challenges in early detection. Currently, there are no ideal drugs developed for treatment, making it crucial to explore potential biomarkers and molecular targets for esophageal cancer. FOXP3, as a transcription factor and major regulator of regulatory T cells, not only plays a role in promoting or inhibiting tumor development in various types of cancer cells including esophageal cancer cells but also influences the function of Treg cells by regulating the expression of multiple genes. This paper provides an in-depth discussion on the functional properties, regulatory mechanisms, key signaling pathways, as well as the role and potential application of FOXP3 in treating esophageal cancer. Furthermore, it comprehensively analyzes the complex role of this transcription factor within the tumor immune microenvironment with an aim to aid in developing new potential targets for esophageal cancer treatment.
期刊介绍:
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer encompasses the entirety of cancer biology and biochemistry, emphasizing oncogenes and tumor suppressor genes, growth-related cell cycle control signaling, carcinogenesis mechanisms, cell transformation, immunologic control mechanisms, genetics of human (mammalian) cancer, control of cell proliferation, genetic and molecular control of organismic development, rational anti-tumor drug design. It publishes mini-reviews and full reviews.