Mahsa Modiri, Pavankumar Challa Sasi, Kyle A Thompson, Linda Lee, Katie Marjanovic, Graeme Hystad, Huoston Marsh, Kamruzzaman Khan, John Norton
{"title":"全氟辛烷磺酸残留物管理方案的科学现状和法规可接受性:PFAS 处置或销毁方案。","authors":"Mahsa Modiri, Pavankumar Challa Sasi, Kyle A Thompson, Linda Lee, Katie Marjanovic, Graeme Hystad, Huoston Marsh, Kamruzzaman Khan, John Norton","doi":"10.1016/j.chemosphere.2024.143726","DOIUrl":null,"url":null,"abstract":"<p><p>This systematic review covers the urgent challenges posed by per- and polyfluoroalkyl substances (PFAS) in managing residuals from municipal, industrial, and waste treatment sources. It covers regulatory considerations, treatment technologies, residual management strategies, and critical conclusions and recommendations. A rigorous methodology was employed, utilizing scientific search engines and a wide array of peer-reviewed journal articles, technical reports, and regulatory guidance, to ensure the inclusion of the most relevant and up-to-date information on PFAS management of impacted residuals. The increasing public and regulatory focus underscores the persistence and environmental impact of PFAS. Emerging technologies for removing and sequestrating PFAS from environmental media are evaluated, and innovative destruction methods for addressing the residual media and the concentrated waste streams generated from such treatment processes are reviewed. Additionally, the evolving regulatory landscape in the United States is summarized and insights into the complexities of PFAS in residual management are discussed. Overall, this systematic review serves as a vital resource to inform stakeholders, guide research, and facilitate responsible PFAS management, emphasizing the pressing need for effective residual management solutions amidst evolving regulations and persistent environmental threats.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143726"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State of the Science and Regulatory Acceptability for PFAS Residual Management Options: PFAS Disposal or Destruction Options.\",\"authors\":\"Mahsa Modiri, Pavankumar Challa Sasi, Kyle A Thompson, Linda Lee, Katie Marjanovic, Graeme Hystad, Huoston Marsh, Kamruzzaman Khan, John Norton\",\"doi\":\"10.1016/j.chemosphere.2024.143726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This systematic review covers the urgent challenges posed by per- and polyfluoroalkyl substances (PFAS) in managing residuals from municipal, industrial, and waste treatment sources. It covers regulatory considerations, treatment technologies, residual management strategies, and critical conclusions and recommendations. A rigorous methodology was employed, utilizing scientific search engines and a wide array of peer-reviewed journal articles, technical reports, and regulatory guidance, to ensure the inclusion of the most relevant and up-to-date information on PFAS management of impacted residuals. The increasing public and regulatory focus underscores the persistence and environmental impact of PFAS. Emerging technologies for removing and sequestrating PFAS from environmental media are evaluated, and innovative destruction methods for addressing the residual media and the concentrated waste streams generated from such treatment processes are reviewed. Additionally, the evolving regulatory landscape in the United States is summarized and insights into the complexities of PFAS in residual management are discussed. Overall, this systematic review serves as a vital resource to inform stakeholders, guide research, and facilitate responsible PFAS management, emphasizing the pressing need for effective residual management solutions amidst evolving regulations and persistent environmental threats.</p>\",\"PeriodicalId\":93933,\"journal\":{\"name\":\"Chemosphere\",\"volume\":\" \",\"pages\":\"143726\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chemosphere.2024.143726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
State of the Science and Regulatory Acceptability for PFAS Residual Management Options: PFAS Disposal or Destruction Options.
This systematic review covers the urgent challenges posed by per- and polyfluoroalkyl substances (PFAS) in managing residuals from municipal, industrial, and waste treatment sources. It covers regulatory considerations, treatment technologies, residual management strategies, and critical conclusions and recommendations. A rigorous methodology was employed, utilizing scientific search engines and a wide array of peer-reviewed journal articles, technical reports, and regulatory guidance, to ensure the inclusion of the most relevant and up-to-date information on PFAS management of impacted residuals. The increasing public and regulatory focus underscores the persistence and environmental impact of PFAS. Emerging technologies for removing and sequestrating PFAS from environmental media are evaluated, and innovative destruction methods for addressing the residual media and the concentrated waste streams generated from such treatment processes are reviewed. Additionally, the evolving regulatory landscape in the United States is summarized and insights into the complexities of PFAS in residual management are discussed. Overall, this systematic review serves as a vital resource to inform stakeholders, guide research, and facilitate responsible PFAS management, emphasizing the pressing need for effective residual management solutions amidst evolving regulations and persistent environmental threats.