基于ν-间隙度量的多输入多输出(MIMO)系统故障诊断与容错策略

Shufeng Zhang, Changan Liu, Yuntao Shi, Xiang Yin
{"title":"基于ν-间隙度量的多输入多输出(MIMO)系统故障诊断与容错策略","authors":"Shufeng Zhang, Changan Liu, Yuntao Shi, Xiang Yin","doi":"10.1016/j.isatra.2024.10.029","DOIUrl":null,"url":null,"abstract":"<p><p>The coupled relationship between inputs and outputs in multiple-input multiple-output (MIMO) systems, as well as the multiplicative uncertainties caused by multiplicative faults, increases the complexity of fault diagnosis (FD) and fault-tolerant control (FTC). Research has indicated that coprime factor uncertainties are suitable for modeling multiplicative uncertainties. This paper presents an FD and FTC strategy for MIMO systems based on the ν-gap metric technique within the coprime factorization framework. In the offline phase, the ν-gap metric-based hierarchical clustering method is designed to classify fault samples. Next, core systems and boundary systems are calculated for each fault category, and corresponding residual compensation controllers are designed. In the online phase, by computing the relevant ν-gap metric values, the fault severity of the real-time system is determined, and the core system with similar dynamic behaviors is identified. This FD result drives the switching of residual compensation controller, achieving FTC and ensuring system stability and robustness. This strategy eliminates the need for online solving of fault-tolerant controller, saving computational resources. Finally, the ν-gap metric-based FD and FTC strategy is validated with simulations on a three-phase voltage source inverter system.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault diagnosis and tolerant strategy for MIMO system based on ν-gap metric.\",\"authors\":\"Shufeng Zhang, Changan Liu, Yuntao Shi, Xiang Yin\",\"doi\":\"10.1016/j.isatra.2024.10.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The coupled relationship between inputs and outputs in multiple-input multiple-output (MIMO) systems, as well as the multiplicative uncertainties caused by multiplicative faults, increases the complexity of fault diagnosis (FD) and fault-tolerant control (FTC). Research has indicated that coprime factor uncertainties are suitable for modeling multiplicative uncertainties. This paper presents an FD and FTC strategy for MIMO systems based on the ν-gap metric technique within the coprime factorization framework. In the offline phase, the ν-gap metric-based hierarchical clustering method is designed to classify fault samples. Next, core systems and boundary systems are calculated for each fault category, and corresponding residual compensation controllers are designed. In the online phase, by computing the relevant ν-gap metric values, the fault severity of the real-time system is determined, and the core system with similar dynamic behaviors is identified. This FD result drives the switching of residual compensation controller, achieving FTC and ensuring system stability and robustness. This strategy eliminates the need for online solving of fault-tolerant controller, saving computational resources. Finally, the ν-gap metric-based FD and FTC strategy is validated with simulations on a three-phase voltage source inverter system.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2024.10.029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.10.029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多输入多输出(MIMO)系统中输入和输出之间的耦合关系,以及由乘法故障引起的乘法不确定性,增加了故障诊断(FD)和容错控制(FTC)的复杂性。研究表明,共倍因子不确定性适合于模拟乘法不确定性。本文提出了一种基于共乘因子框架内的ν-间隙度量技术的 MIMO 系统故障诊断和容错控制策略。在离线阶段,设计了基于ν-间隙度量的分层聚类方法来对故障样本进行分类。然后,计算每个故障类别的核心系统和边界系统,并设计相应的残差补偿控制器。在在线阶段,通过计算相关的 ν-gap 指标值,确定实时系统的故障严重程度,并找出具有相似动态行为的核心系统。这一 FD 结果驱动残差补偿控制器的切换,实现 FTC 并确保系统的稳定性和鲁棒性。这种策略无需在线求解容错控制器,节省了计算资源。最后,通过对三相电压源逆变器系统的仿真,验证了基于 ν 间隙度量的 FD 和 FTC 策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault diagnosis and tolerant strategy for MIMO system based on ν-gap metric.

The coupled relationship between inputs and outputs in multiple-input multiple-output (MIMO) systems, as well as the multiplicative uncertainties caused by multiplicative faults, increases the complexity of fault diagnosis (FD) and fault-tolerant control (FTC). Research has indicated that coprime factor uncertainties are suitable for modeling multiplicative uncertainties. This paper presents an FD and FTC strategy for MIMO systems based on the ν-gap metric technique within the coprime factorization framework. In the offline phase, the ν-gap metric-based hierarchical clustering method is designed to classify fault samples. Next, core systems and boundary systems are calculated for each fault category, and corresponding residual compensation controllers are designed. In the online phase, by computing the relevant ν-gap metric values, the fault severity of the real-time system is determined, and the core system with similar dynamic behaviors is identified. This FD result drives the switching of residual compensation controller, achieving FTC and ensuring system stability and robustness. This strategy eliminates the need for online solving of fault-tolerant controller, saving computational resources. Finally, the ν-gap metric-based FD and FTC strategy is validated with simulations on a three-phase voltage source inverter system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking control for two-wheeled mobile robots via event-triggered mechanism. Analysis of proportional-resonant damping factors in the parallel operation of UPSs. State estimation of networked nonlinear systems with aperiodic sampled delayed measurement. Hybrid impulsive control for global stabilization of subfully actuated systems. A high-speed method for computing reachable sets based on variable-size grid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1