炎症靶向输送尿石素 A 可减轻化学物质和免疫检查点抑制剂诱发的结肠炎。

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Nanobiotechnology Pub Date : 2024-11-13 DOI:10.1186/s12951-024-02990-8
Sweta Ghosh, Rajbir Singh, Tanu Jain Goap, Omprakash Sunnapu, Zachary M Vanwinkle, Hong Li, Syam P Nukavarapu, Gerald W Dryden, Bodduluri Haribabu, Praveen Kumar Vemula, Venkatakrishna Rao Jala
{"title":"炎症靶向输送尿石素 A 可减轻化学物质和免疫检查点抑制剂诱发的结肠炎。","authors":"Sweta Ghosh, Rajbir Singh, Tanu Jain Goap, Omprakash Sunnapu, Zachary M Vanwinkle, Hong Li, Syam P Nukavarapu, Gerald W Dryden, Bodduluri Haribabu, Praveen Kumar Vemula, Venkatakrishna Rao Jala","doi":"10.1186/s12951-024-02990-8","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) treatment often involves systemic administration of anti-inflammatory drugs or biologics such as anti-TNF-α antibodies. However, current drug therapies suffer from limited efficacy due to unresponsiveness and adverse side effects. To address these challenges, we developed inflammation-targeting nanoparticles (ITNPs) using biopolymers derived from the gum kondagogu (Cochlospermum gossypium) plant. These ITNPs enable selective drug delivery to inflamed regions, offering improved therapeutic outcomes. We designed ITNPs that specifically bind to inflamed regions in both human and mouse intestines, facilitating more effective, uniform, and prolonged drug delivery within the inflamed tissues. Furthermore, we demonstrated that oral administration of ITNPs loaded with urolithin A (UroA), a microbial metabolite or its synthetic analogue UAS03 significantly attenuated chemical- and immune checkpoint inhibitor- induced colitis in pre-clinical models. In conclusion, ITNPs show great promise for delivering UroA or its analogues while enhancing therapeutic efficacy at lower doses and reduced frequency compared to free drug administration. This targeted approach offers a potential solution to enhance IBD treatment while minimizing systemic side effects.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"701"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558909/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inflammation-targeted delivery of Urolithin A mitigates chemical- and immune checkpoint inhibitor-induced colitis.\",\"authors\":\"Sweta Ghosh, Rajbir Singh, Tanu Jain Goap, Omprakash Sunnapu, Zachary M Vanwinkle, Hong Li, Syam P Nukavarapu, Gerald W Dryden, Bodduluri Haribabu, Praveen Kumar Vemula, Venkatakrishna Rao Jala\",\"doi\":\"10.1186/s12951-024-02990-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammatory bowel disease (IBD) treatment often involves systemic administration of anti-inflammatory drugs or biologics such as anti-TNF-α antibodies. However, current drug therapies suffer from limited efficacy due to unresponsiveness and adverse side effects. To address these challenges, we developed inflammation-targeting nanoparticles (ITNPs) using biopolymers derived from the gum kondagogu (Cochlospermum gossypium) plant. These ITNPs enable selective drug delivery to inflamed regions, offering improved therapeutic outcomes. We designed ITNPs that specifically bind to inflamed regions in both human and mouse intestines, facilitating more effective, uniform, and prolonged drug delivery within the inflamed tissues. Furthermore, we demonstrated that oral administration of ITNPs loaded with urolithin A (UroA), a microbial metabolite or its synthetic analogue UAS03 significantly attenuated chemical- and immune checkpoint inhibitor- induced colitis in pre-clinical models. In conclusion, ITNPs show great promise for delivering UroA or its analogues while enhancing therapeutic efficacy at lower doses and reduced frequency compared to free drug administration. This targeted approach offers a potential solution to enhance IBD treatment while minimizing systemic side effects.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"22 1\",\"pages\":\"701\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558909/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-024-02990-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02990-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

炎症性肠病(IBD)的治疗通常需要全身服用抗炎药物或生物制剂,如抗 TNF-α 抗体。然而,目前的药物疗法因反应迟钝和不良副作用而疗效有限。为了应对这些挑战,我们开发了炎症靶向纳米粒子(ITNPs),使用的生物聚合物取自康达古胶(Cochlospermum gossypium)植物。这些 ITNPs 能够选择性地将药物输送到发炎区域,从而提高治疗效果。我们设计的 ITNPs 能与人和小鼠肠道中的炎症区域特异性结合,从而在炎症组织内更有效、更均匀、更持久地给药。此外,我们还证明,在临床前模型中,口服含有微生物代谢产物尿石素 A(UroA)或其合成类似物 UAS03 的 ITNPs 能显著减轻化学物质和免疫检查点抑制剂诱发的结肠炎。总之,与自由给药相比,ITNPs 在以较低剂量和较少频率提供 UroA 或其类似物并提高疗效方面显示出巨大前景。这种靶向方法为加强 IBD 治疗提供了一种潜在的解决方案,同时将全身副作用降至最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inflammation-targeted delivery of Urolithin A mitigates chemical- and immune checkpoint inhibitor-induced colitis.

Inflammatory bowel disease (IBD) treatment often involves systemic administration of anti-inflammatory drugs or biologics such as anti-TNF-α antibodies. However, current drug therapies suffer from limited efficacy due to unresponsiveness and adverse side effects. To address these challenges, we developed inflammation-targeting nanoparticles (ITNPs) using biopolymers derived from the gum kondagogu (Cochlospermum gossypium) plant. These ITNPs enable selective drug delivery to inflamed regions, offering improved therapeutic outcomes. We designed ITNPs that specifically bind to inflamed regions in both human and mouse intestines, facilitating more effective, uniform, and prolonged drug delivery within the inflamed tissues. Furthermore, we demonstrated that oral administration of ITNPs loaded with urolithin A (UroA), a microbial metabolite or its synthetic analogue UAS03 significantly attenuated chemical- and immune checkpoint inhibitor- induced colitis in pre-clinical models. In conclusion, ITNPs show great promise for delivering UroA or its analogues while enhancing therapeutic efficacy at lower doses and reduced frequency compared to free drug administration. This targeted approach offers a potential solution to enhance IBD treatment while minimizing systemic side effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
期刊最新文献
Microenvironment-optimized gastrodin-functionalized scaffolds orchestrate asymmetric division of recruited stem cells in endogenous bone regeneration. Mechanism of cold exposure delaying wound healing in mice. Microfluidic-engineered Chinese herbal nanocomposite hydrogel microspheres for diabetic wound tissue regeneration. Endothelial cell-derived exosomes trigger a positive feedback loop in osteogenesis-angiogenesis coupling via up-regulating zinc finger and BTB domain containing 16 in bone marrow mesenchymal stem cell. Physical, biochemical, and biological characterization of olive-derived lipid nanovesicles for drug delivery applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1