与视觉运动感知有关的人脑性别差异。

IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Biology of Sex Differences Pub Date : 2024-11-11 DOI:10.1186/s13293-024-00668-2
Dong-Yu Liu, Ming Li, Juan Yu, Yuan Gao, Xiaotong Zhang, Dewen Hu, Georg Northoff, Xue Mei Song, Junming Zhu
{"title":"与视觉运动感知有关的人脑性别差异。","authors":"Dong-Yu Liu, Ming Li, Juan Yu, Yuan Gao, Xiaotong Zhang, Dewen Hu, Georg Northoff, Xue Mei Song, Junming Zhu","doi":"10.1186/s13293-024-00668-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Previous studies have found that the temporal duration required for males to perceive visual motion direction is significantly shorter than that for females. However, the neural correlates of such shortened duration perception remain yet unclear. Given that motion perception is primarily associated with the neural activity of the middle temporal visual complex (MT+), we here test the novel hypothesis that the neural mechanism of these behavioral sex differences is mainly related to the MT+ region.</p><p><strong>Methods: </strong>We utilized ultra-high field (UHF) MRI to investigate sex differences in the MT+ brain region. A total of 95 subjects (48 females) participated in two separate studies. Cohort 1, consisting of 33 subjects (16 females), completed task-fMRI (drafting grating stimuli) experiment. Cohort 2, comprising 62 subjects (32 females), engaged in a psychophysical experiment measuring motion perception along different temporal thresholds as well as conducting structural and functional MRI scanning of MT+.</p><p><strong>Results: </strong>Our findings show pronounced sex differences in major brain parameters within the left MT+ (but not the right MT+, i.e., laterality). In particular, males demonstrate (i) larger gray matter volume (GMV) and higher brain's spontaneous activity at the fastest infra-slow frequency band in the left MT+; and (ii) stronger functional connectivity between the left MT+ and the left centromedial amygdala (CM). Meanwhile, both female and male participants exhibited comparable correlations between motion perception ability and the multimodal imaging indexes of the MT+ region, i.e., larger GMV, higher brain's spontaneous activity, and faster motion discrimination.</p><p><strong>Conclusions: </strong>Our findings reveal sex differences of imaging indicators of structure and function in the MT+ region, which also relate to the temporal threshold of motion discrimination. Overall, these results show how behavioral sex differences in visual motion perception are generated, and advocate considering sex as a crucial biological variable in both human brain and behavioral research.</p>","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"15 1","pages":"92"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552312/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sex differences in the human brain related to visual motion perception.\",\"authors\":\"Dong-Yu Liu, Ming Li, Juan Yu, Yuan Gao, Xiaotong Zhang, Dewen Hu, Georg Northoff, Xue Mei Song, Junming Zhu\",\"doi\":\"10.1186/s13293-024-00668-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Previous studies have found that the temporal duration required for males to perceive visual motion direction is significantly shorter than that for females. However, the neural correlates of such shortened duration perception remain yet unclear. Given that motion perception is primarily associated with the neural activity of the middle temporal visual complex (MT+), we here test the novel hypothesis that the neural mechanism of these behavioral sex differences is mainly related to the MT+ region.</p><p><strong>Methods: </strong>We utilized ultra-high field (UHF) MRI to investigate sex differences in the MT+ brain region. A total of 95 subjects (48 females) participated in two separate studies. Cohort 1, consisting of 33 subjects (16 females), completed task-fMRI (drafting grating stimuli) experiment. Cohort 2, comprising 62 subjects (32 females), engaged in a psychophysical experiment measuring motion perception along different temporal thresholds as well as conducting structural and functional MRI scanning of MT+.</p><p><strong>Results: </strong>Our findings show pronounced sex differences in major brain parameters within the left MT+ (but not the right MT+, i.e., laterality). In particular, males demonstrate (i) larger gray matter volume (GMV) and higher brain's spontaneous activity at the fastest infra-slow frequency band in the left MT+; and (ii) stronger functional connectivity between the left MT+ and the left centromedial amygdala (CM). Meanwhile, both female and male participants exhibited comparable correlations between motion perception ability and the multimodal imaging indexes of the MT+ region, i.e., larger GMV, higher brain's spontaneous activity, and faster motion discrimination.</p><p><strong>Conclusions: </strong>Our findings reveal sex differences of imaging indicators of structure and function in the MT+ region, which also relate to the temporal threshold of motion discrimination. Overall, these results show how behavioral sex differences in visual motion perception are generated, and advocate considering sex as a crucial biological variable in both human brain and behavioral research.</p>\",\"PeriodicalId\":8890,\"journal\":{\"name\":\"Biology of Sex Differences\",\"volume\":\"15 1\",\"pages\":\"92\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552312/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology of Sex Differences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13293-024-00668-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Sex Differences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13293-024-00668-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

背景:以往的研究发现,男性感知视觉运动方向所需的时间长度明显短于女性。然而,这种持续时间缩短的神经相关性仍不清楚。鉴于运动感知主要与中颞视觉复合体(MT+)的神经活动有关,我们在此验证了一个新的假设,即这些行为性别差异的神经机制主要与 MT+ 区域有关:我们利用超高频磁共振成像(UHF)研究了MT+脑区的性别差异。共有 95 名受试者(48 名女性)参加了两项独立的研究。第一组包括 33 名受试者(16 名女性),他们完成了任务-MRI(草图光栅刺激)实验。第二组包括 62 名受试者(32 名女性),他们参加了一项心理物理实验,测量不同时间阈值的运动感知,并对 MT+ 进行结构和功能磁共振成像扫描:我们的研究结果表明,左侧 MT+(而非右侧 MT+,即侧向)的主要脑参数存在明显的性别差异。特别是,男性表现出(i)左侧MT+灰质体积(GMV)更大,大脑在最快次低频段的自发活动更高;(ii)左侧MT+与左侧中央内侧杏仁核(CM)之间的功能连接更强。同时,女性和男性参与者的运动感知能力与MT+区域的多模态成像指标(即更大的GMV、更高的大脑自发活动和更快的运动辨别能力)之间表现出相似的相关性:我们的研究结果揭示了MT+区域结构和功能成像指标的性别差异,这也与运动辨别的时间阈值有关。总之,这些结果显示了视觉运动感知中的行为性别差异是如何产生的,并提倡在人脑和行为研究中将性别视为一个重要的生物变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sex differences in the human brain related to visual motion perception.

Background: Previous studies have found that the temporal duration required for males to perceive visual motion direction is significantly shorter than that for females. However, the neural correlates of such shortened duration perception remain yet unclear. Given that motion perception is primarily associated with the neural activity of the middle temporal visual complex (MT+), we here test the novel hypothesis that the neural mechanism of these behavioral sex differences is mainly related to the MT+ region.

Methods: We utilized ultra-high field (UHF) MRI to investigate sex differences in the MT+ brain region. A total of 95 subjects (48 females) participated in two separate studies. Cohort 1, consisting of 33 subjects (16 females), completed task-fMRI (drafting grating stimuli) experiment. Cohort 2, comprising 62 subjects (32 females), engaged in a psychophysical experiment measuring motion perception along different temporal thresholds as well as conducting structural and functional MRI scanning of MT+.

Results: Our findings show pronounced sex differences in major brain parameters within the left MT+ (but not the right MT+, i.e., laterality). In particular, males demonstrate (i) larger gray matter volume (GMV) and higher brain's spontaneous activity at the fastest infra-slow frequency band in the left MT+; and (ii) stronger functional connectivity between the left MT+ and the left centromedial amygdala (CM). Meanwhile, both female and male participants exhibited comparable correlations between motion perception ability and the multimodal imaging indexes of the MT+ region, i.e., larger GMV, higher brain's spontaneous activity, and faster motion discrimination.

Conclusions: Our findings reveal sex differences of imaging indicators of structure and function in the MT+ region, which also relate to the temporal threshold of motion discrimination. Overall, these results show how behavioral sex differences in visual motion perception are generated, and advocate considering sex as a crucial biological variable in both human brain and behavioral research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology of Sex Differences
Biology of Sex Differences ENDOCRINOLOGY & METABOLISM-GENETICS & HEREDITY
CiteScore
12.10
自引率
1.30%
发文量
69
审稿时长
14 weeks
期刊介绍: Biology of Sex Differences is a unique scientific journal focusing on sex differences in physiology, behavior, and disease from molecular to phenotypic levels, incorporating both basic and clinical research. The journal aims to enhance understanding of basic principles and facilitate the development of therapeutic and diagnostic tools specific to sex differences. As an open-access journal, it is the official publication of the Organization for the Study of Sex Differences and co-published by the Society for Women's Health Research. Topical areas include, but are not limited to sex differences in: genomics; the microbiome; epigenetics; molecular and cell biology; tissue biology; physiology; interaction of tissue systems, in any system including adipose, behavioral, cardiovascular, immune, muscular, neural, renal, and skeletal; clinical studies bearing on sex differences in disease or response to therapy.
期刊最新文献
Sex differences in the human brain related to visual motion perception. A call for inclusive research, policies, and leadership to close the global women's health gap. Sex differences in contextual fear conditioning and extinction after acute and chronic nicotine treatment. Sex dimorphism and tissue specificity of gene expression changes in aging mice. The Four Core Genotypes mouse model: evaluating the impact of a recently discovered translocation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1