{"title":"用于高光谱图像分析的注意力引导半监督生成迁移学习","authors":"Anan Yaghmour;Saurabh Prasad;Melba M. Crawford","doi":"10.1109/JSTARS.2024.3485528","DOIUrl":null,"url":null,"abstract":"In geospatial image analysis, domain shifts caused by differences between datasets often undermine the performance of deep learning models due to their limited generalization ability. This issue is particularly pronounced in hyperspectral imagery, given the high dimensionality of the per-pixel reflectance vectors and the complexity of the resulting deep learning models. We introduce a semisupervised domain adaptation technique that improves on the adversarial discriminative framework, incorporating a novel multiclass discriminator to address low discriminability and negative transfer issues from which current approaches suffer. Significantly, our method addresses mode collapse by incorporating limited labeled data from the target domain for targeted guidance during adaptation. In addition, we integrate an attention mechanism that focuses on challenging spatial regions for the target mode. We tested our approach on three unique hyperspectral remote sensing datasets to demonstrate its efficacy in diverse conditions (e.g., cloud shadows, atmospheric variability, and terrain). This strategy improves discrimination and reduces negative transfer in domain adaptation for geospatial image analysis.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"19884-19899"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10731899","citationCount":"0","resultStr":"{\"title\":\"Attention Guided Semisupervised Generative Transfer Learning for Hyperspectral Image Analysis\",\"authors\":\"Anan Yaghmour;Saurabh Prasad;Melba M. Crawford\",\"doi\":\"10.1109/JSTARS.2024.3485528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In geospatial image analysis, domain shifts caused by differences between datasets often undermine the performance of deep learning models due to their limited generalization ability. This issue is particularly pronounced in hyperspectral imagery, given the high dimensionality of the per-pixel reflectance vectors and the complexity of the resulting deep learning models. We introduce a semisupervised domain adaptation technique that improves on the adversarial discriminative framework, incorporating a novel multiclass discriminator to address low discriminability and negative transfer issues from which current approaches suffer. Significantly, our method addresses mode collapse by incorporating limited labeled data from the target domain for targeted guidance during adaptation. In addition, we integrate an attention mechanism that focuses on challenging spatial regions for the target mode. We tested our approach on three unique hyperspectral remote sensing datasets to demonstrate its efficacy in diverse conditions (e.g., cloud shadows, atmospheric variability, and terrain). This strategy improves discrimination and reduces negative transfer in domain adaptation for geospatial image analysis.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":\"17 \",\"pages\":\"19884-19899\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10731899\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10731899/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10731899/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Attention Guided Semisupervised Generative Transfer Learning for Hyperspectral Image Analysis
In geospatial image analysis, domain shifts caused by differences between datasets often undermine the performance of deep learning models due to their limited generalization ability. This issue is particularly pronounced in hyperspectral imagery, given the high dimensionality of the per-pixel reflectance vectors and the complexity of the resulting deep learning models. We introduce a semisupervised domain adaptation technique that improves on the adversarial discriminative framework, incorporating a novel multiclass discriminator to address low discriminability and negative transfer issues from which current approaches suffer. Significantly, our method addresses mode collapse by incorporating limited labeled data from the target domain for targeted guidance during adaptation. In addition, we integrate an attention mechanism that focuses on challenging spatial regions for the target mode. We tested our approach on three unique hyperspectral remote sensing datasets to demonstrate its efficacy in diverse conditions (e.g., cloud shadows, atmospheric variability, and terrain). This strategy improves discrimination and reduces negative transfer in domain adaptation for geospatial image analysis.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.