基于深度半监督学习的低信噪比频谱传感

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS IEEE Communications Letters Pub Date : 2024-09-26 DOI:10.1109/LCOMM.2024.3468299
Guanghai Xu;Yonghua Wang;Bingfeng Zheng;Jiawen Li
{"title":"基于深度半监督学习的低信噪比频谱传感","authors":"Guanghai Xu;Yonghua Wang;Bingfeng Zheng;Jiawen Li","doi":"10.1109/LCOMM.2024.3468299","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) has been introduced to spectrum sensing to improve spectrum utilization effectively. However, some DL-based methods struggle to sense spectrum occupancy at low-signal-to-noise ratio (SNR) and require significant quantities of labeled samples for training in new environments. Therefore, this letter proposes a novel spectrum sensing method based on deep semi-supervised learning (DSSL). Specifically, adopting the DSSL during offline training can effectively mitigate the issue of insufficient labeled samples, while introducing an improved Generative Adversarial Network (GAN) makes the convolutional neural network (CNN) model robust to incorrect pseudo-labels through adversarial learning, thereby enhancing the adaptability and performance of the CNN model. Simulation results show that the proposed approach is more effective and robust than existing methods, particularly under low SNR levels.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"28 11","pages":"2558-2562"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Semi-Supervised Learning-Based Spectrum Sensing at Low SNR\",\"authors\":\"Guanghai Xu;Yonghua Wang;Bingfeng Zheng;Jiawen Li\",\"doi\":\"10.1109/LCOMM.2024.3468299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning (DL) has been introduced to spectrum sensing to improve spectrum utilization effectively. However, some DL-based methods struggle to sense spectrum occupancy at low-signal-to-noise ratio (SNR) and require significant quantities of labeled samples for training in new environments. Therefore, this letter proposes a novel spectrum sensing method based on deep semi-supervised learning (DSSL). Specifically, adopting the DSSL during offline training can effectively mitigate the issue of insufficient labeled samples, while introducing an improved Generative Adversarial Network (GAN) makes the convolutional neural network (CNN) model robust to incorrect pseudo-labels through adversarial learning, thereby enhancing the adaptability and performance of the CNN model. Simulation results show that the proposed approach is more effective and robust than existing methods, particularly under low SNR levels.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"28 11\",\"pages\":\"2558-2562\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10695106/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10695106/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

深度学习(DL)已被引入频谱感知领域,以有效提高频谱利用率。然而,一些基于深度学习的方法很难在低信噪比(SNR)条件下感知频谱占用情况,并且需要大量标记样本在新环境中进行训练。因此,本文提出了一种基于深度半监督学习(DSSL)的新型频谱感知方法。具体来说,在离线训练中采用 DSSL 可以有效缓解标注样本不足的问题,同时引入改进的生成对抗网络(GAN),通过对抗学习使卷积神经网络(CNN)模型对不正确的伪标签具有鲁棒性,从而提高 CNN 模型的适应性和性能。仿真结果表明,所提出的方法比现有方法更有效、更稳健,尤其是在低信噪比水平下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Semi-Supervised Learning-Based Spectrum Sensing at Low SNR
Deep learning (DL) has been introduced to spectrum sensing to improve spectrum utilization effectively. However, some DL-based methods struggle to sense spectrum occupancy at low-signal-to-noise ratio (SNR) and require significant quantities of labeled samples for training in new environments. Therefore, this letter proposes a novel spectrum sensing method based on deep semi-supervised learning (DSSL). Specifically, adopting the DSSL during offline training can effectively mitigate the issue of insufficient labeled samples, while introducing an improved Generative Adversarial Network (GAN) makes the convolutional neural network (CNN) model robust to incorrect pseudo-labels through adversarial learning, thereby enhancing the adaptability and performance of the CNN model. Simulation results show that the proposed approach is more effective and robust than existing methods, particularly under low SNR levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
期刊最新文献
Table of Contents IEEE Communications Letters Publication Information IEEE Communications Society Information Table of Contents IEEE Communications Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1