针对全局优化和受限工程问题的多策略秃鹰搜索算法:MLP 分类问题案例研究

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence Review Pub Date : 2024-11-15 DOI:10.1007/s10462-024-10957-2
Rong Zheng, Ruikang Li, Abdelazim G. Hussien, Qusay Shihab Hamad, Mohammed Azmi Al-Betar, Yan Che, Hui Wen
{"title":"针对全局优化和受限工程问题的多策略秃鹰搜索算法:MLP 分类问题案例研究","authors":"Rong Zheng,&nbsp;Ruikang Li,&nbsp;Abdelazim G. Hussien,&nbsp;Qusay Shihab Hamad,&nbsp;Mohammed Azmi Al-Betar,&nbsp;Yan Che,&nbsp;Hui Wen","doi":"10.1007/s10462-024-10957-2","DOIUrl":null,"url":null,"abstract":"<div><p>The Bald Eagle Search (BES) algorithm is an innovative population-based method inspired by the intelligent hunting behavior of bald eagles. While BES shows promise, it faces challenges such as susceptibility to local optima and imbalances between exploration and exploitation phases. To address these limitations, this paper introduces the Multi-Strategy Boosted Bald Eagle Search (MBBES) algorithm. MBBES enhances the original BES by incorporating an adaptive parameter, two distinct mutation strategies, and replacing the swoop stage with a fall stage. We rigorously evaluate MBBES against classic and improved algorithms using the CEC2014 and CEC2017 test sets. The experimental results demonstrate that MBBES significantly improves the ability to escape local optima and achieves superior convergence accuracy. Moreover, MBBES ranks first according to the Friedman test, outperforming its counterparts in solving five practical engineering problems and three MLP classification problems, underscoring its effectiveness in real-world optimization scenarios. These findings indicate that MBBES not only surpasses BES but also sets a new benchmark in optimization performance.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-10957-2.pdf","citationCount":"0","resultStr":"{\"title\":\"A multi-strategy boosted bald eagle search algorithm for global optimization and constrained engineering problems: case study on MLP classification problems\",\"authors\":\"Rong Zheng,&nbsp;Ruikang Li,&nbsp;Abdelazim G. Hussien,&nbsp;Qusay Shihab Hamad,&nbsp;Mohammed Azmi Al-Betar,&nbsp;Yan Che,&nbsp;Hui Wen\",\"doi\":\"10.1007/s10462-024-10957-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Bald Eagle Search (BES) algorithm is an innovative population-based method inspired by the intelligent hunting behavior of bald eagles. While BES shows promise, it faces challenges such as susceptibility to local optima and imbalances between exploration and exploitation phases. To address these limitations, this paper introduces the Multi-Strategy Boosted Bald Eagle Search (MBBES) algorithm. MBBES enhances the original BES by incorporating an adaptive parameter, two distinct mutation strategies, and replacing the swoop stage with a fall stage. We rigorously evaluate MBBES against classic and improved algorithms using the CEC2014 and CEC2017 test sets. The experimental results demonstrate that MBBES significantly improves the ability to escape local optima and achieves superior convergence accuracy. Moreover, MBBES ranks first according to the Friedman test, outperforming its counterparts in solving five practical engineering problems and three MLP classification problems, underscoring its effectiveness in real-world optimization scenarios. These findings indicate that MBBES not only surpasses BES but also sets a new benchmark in optimization performance.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-024-10957-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-024-10957-2\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-10957-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

秃鹰搜索(BES)算法是一种基于种群的创新方法,其灵感来源于秃鹰的智能狩猎行为。虽然 BES 算法前景广阔,但它也面临着一些挑战,例如容易出现局部最优以及探索和利用阶段之间的不平衡。为了解决这些局限性,本文介绍了多策略助推秃鹰搜索(MBBES)算法。MBBES 加入了一个自适应参数、两种不同的突变策略,并用下降阶段取代了俯冲阶段,从而增强了原始 BES 算法。我们使用 CEC2014 和 CEC2017 测试集对 MBBES 与经典算法和改进算法进行了严格评估。实验结果表明,MBBES 显著提高了摆脱局部最优的能力,并实现了更高的收敛精度。此外,根据弗里德曼测试,MBBES 在解决五个实际工程问题和三个 MLP 分类问题方面的表现优于同类算法,排名第一,这凸显了其在实际优化场景中的有效性。这些研究结果表明,MBBES 不仅超越了 BES,而且在优化性能方面树立了新的标杆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-strategy boosted bald eagle search algorithm for global optimization and constrained engineering problems: case study on MLP classification problems

The Bald Eagle Search (BES) algorithm is an innovative population-based method inspired by the intelligent hunting behavior of bald eagles. While BES shows promise, it faces challenges such as susceptibility to local optima and imbalances between exploration and exploitation phases. To address these limitations, this paper introduces the Multi-Strategy Boosted Bald Eagle Search (MBBES) algorithm. MBBES enhances the original BES by incorporating an adaptive parameter, two distinct mutation strategies, and replacing the swoop stage with a fall stage. We rigorously evaluate MBBES against classic and improved algorithms using the CEC2014 and CEC2017 test sets. The experimental results demonstrate that MBBES significantly improves the ability to escape local optima and achieves superior convergence accuracy. Moreover, MBBES ranks first according to the Friedman test, outperforming its counterparts in solving five practical engineering problems and three MLP classification problems, underscoring its effectiveness in real-world optimization scenarios. These findings indicate that MBBES not only surpasses BES but also sets a new benchmark in optimization performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
期刊最新文献
Federated learning design and functional models: survey A systematic literature review of recent advances on context-aware recommender systems Escape: an optimization method based on crowd evacuation behaviors A multi-strategy boosted bald eagle search algorithm for global optimization and constrained engineering problems: case study on MLP classification problems Innovative solution suggestions for financing electric vehicle charging infrastructure investments with a novel artificial intelligence-based fuzzy decision-making modelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1