{"title":"作为无地平线规则黑洞时空的各向异性引力星及其被薄吸积盘照亮的图像","authors":"M. F. Fauzi, H. S. Ramadhan, A. Sulaksono","doi":"10.1140/epjc/s10052-024-13519-6","DOIUrl":null,"url":null,"abstract":"<div><p>A connection between regular black holes and horizonless ultracompact objects was proposed in Carballo-Rubio et al. (JHEP 08:046, 2023, arXiv:2211.05817 [gr-qc]). In this paper, we construct a model of a horizonless compact object, specifically an anisotropic gravastar with continuous pressure, that corresponds to regular black hole spacetime in the appropriate limit. The construction begins by modeling an equation of state that satisfies the anisotropic gravastar conditions and transitions to the de Sitter (<span>\\(p=-\\epsilon \\)</span>) upon horizon formation. The spacetime structure is similar to the <i>Quantum Horizonless Compact Object</i> (QHCO) described in Chen and Yokokura (Phys Rev D 109:104058, 2024, arXiv:2403.09388 [gr-qc]). Within this model, we also generate images of the corresponding objects surrounded by a thin accretion disk. The resulting images reveal that assuming that the emitting matter exists only outside the object, the inner light ring structure closely resembles that of the horizonless configuration of a regular black hole and the QHCO, yet it exhibits a distinct light ring structure compared to the thin-shell gravastar model. However, the opposite occurs when emitting matter is taken into account inside the object.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 11","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13519-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Anisotropic gravastar as horizonless regular black hole spacetime and its images illuminated by thin accretion disk\",\"authors\":\"M. F. Fauzi, H. S. Ramadhan, A. Sulaksono\",\"doi\":\"10.1140/epjc/s10052-024-13519-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A connection between regular black holes and horizonless ultracompact objects was proposed in Carballo-Rubio et al. (JHEP 08:046, 2023, arXiv:2211.05817 [gr-qc]). In this paper, we construct a model of a horizonless compact object, specifically an anisotropic gravastar with continuous pressure, that corresponds to regular black hole spacetime in the appropriate limit. The construction begins by modeling an equation of state that satisfies the anisotropic gravastar conditions and transitions to the de Sitter (<span>\\\\(p=-\\\\epsilon \\\\)</span>) upon horizon formation. The spacetime structure is similar to the <i>Quantum Horizonless Compact Object</i> (QHCO) described in Chen and Yokokura (Phys Rev D 109:104058, 2024, arXiv:2403.09388 [gr-qc]). Within this model, we also generate images of the corresponding objects surrounded by a thin accretion disk. The resulting images reveal that assuming that the emitting matter exists only outside the object, the inner light ring structure closely resembles that of the horizonless configuration of a regular black hole and the QHCO, yet it exhibits a distinct light ring structure compared to the thin-shell gravastar model. However, the opposite occurs when emitting matter is taken into account inside the object.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"84 11\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13519-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-024-13519-6\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13519-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Anisotropic gravastar as horizonless regular black hole spacetime and its images illuminated by thin accretion disk
A connection between regular black holes and horizonless ultracompact objects was proposed in Carballo-Rubio et al. (JHEP 08:046, 2023, arXiv:2211.05817 [gr-qc]). In this paper, we construct a model of a horizonless compact object, specifically an anisotropic gravastar with continuous pressure, that corresponds to regular black hole spacetime in the appropriate limit. The construction begins by modeling an equation of state that satisfies the anisotropic gravastar conditions and transitions to the de Sitter (\(p=-\epsilon \)) upon horizon formation. The spacetime structure is similar to the Quantum Horizonless Compact Object (QHCO) described in Chen and Yokokura (Phys Rev D 109:104058, 2024, arXiv:2403.09388 [gr-qc]). Within this model, we also generate images of the corresponding objects surrounded by a thin accretion disk. The resulting images reveal that assuming that the emitting matter exists only outside the object, the inner light ring structure closely resembles that of the horizonless configuration of a regular black hole and the QHCO, yet it exhibits a distinct light ring structure compared to the thin-shell gravastar model. However, the opposite occurs when emitting matter is taken into account inside the object.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.