pSATdb 2.0:细胞器常见、多态和独特微卫星数据库

IF 3.9 4区 生物学 Q1 GENETICS & HEREDITY Functional & Integrative Genomics Pub Date : 2024-11-15 DOI:10.1007/s10142-024-01498-6
Sonu Kumar, Asheesh Shanker, Dinesh Gupta
{"title":"pSATdb 2.0:细胞器常见、多态和独特微卫星数据库","authors":"Sonu Kumar,&nbsp;Asheesh Shanker,&nbsp;Dinesh Gupta","doi":"10.1007/s10142-024-01498-6","DOIUrl":null,"url":null,"abstract":"<div><p>Microsatellites, or simple sequence repeats (SSRs), are repetitive DNA sequences typically composed of 1–6 nucleotides. These repetitive sequences are found in almost all genomes, including chloroplasts and mitochondria, and are widely distributed throughout the genomes. Microsatellites are highly polymorphic, and their length may differ from species to species. Consequently, microsatellites are widely used as molecular markers and play pivotal roles in various biological research. However, comprehensive information about the length variation of microsatellites in various organellar genome sequences is not available. Therefore, to provide mined information and explore the variability in the length of microsatellites across species, we developed a comprehensive resource named pSATdb 2.0 (<b>p</b>olymorphic micro<b>SAT</b>ellites <b>d</b>ata<b>b</b>ase; https://bioinfo.icgeb.res.in/psatdb/). This upgraded version of its predecessor pSATdb provides comprehensive information on the frequency and distribution of 348,894 microsatellites identified in organellar genome sequences. These sequences originate from 15,681 organisms spanning 3252 genera within Metazoa and Viridiplantae. Remarkably, pSATdb 2.0 is the only database that offers information on common and polymorphic microsatellites detected between organisms, along with unique microsatellites specific to each genus. Furthermore, this database features unrestricted access and includes pioneer functionalities such as Advanced Search, BLAST, and JBrowse, which facilitate user-specific microsatellite search and its visualization within the database. The pSATdb holds immense potential for the research community to support diverse studies, including genetic diversity, genetic mapping, marker-assisted selection, and comparative population investigations.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"24 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pSATdb 2.0: a database of organellar common, polymorphic, and unique microsatellites\",\"authors\":\"Sonu Kumar,&nbsp;Asheesh Shanker,&nbsp;Dinesh Gupta\",\"doi\":\"10.1007/s10142-024-01498-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microsatellites, or simple sequence repeats (SSRs), are repetitive DNA sequences typically composed of 1–6 nucleotides. These repetitive sequences are found in almost all genomes, including chloroplasts and mitochondria, and are widely distributed throughout the genomes. Microsatellites are highly polymorphic, and their length may differ from species to species. Consequently, microsatellites are widely used as molecular markers and play pivotal roles in various biological research. However, comprehensive information about the length variation of microsatellites in various organellar genome sequences is not available. Therefore, to provide mined information and explore the variability in the length of microsatellites across species, we developed a comprehensive resource named pSATdb 2.0 (<b>p</b>olymorphic micro<b>SAT</b>ellites <b>d</b>ata<b>b</b>ase; https://bioinfo.icgeb.res.in/psatdb/). This upgraded version of its predecessor pSATdb provides comprehensive information on the frequency and distribution of 348,894 microsatellites identified in organellar genome sequences. These sequences originate from 15,681 organisms spanning 3252 genera within Metazoa and Viridiplantae. Remarkably, pSATdb 2.0 is the only database that offers information on common and polymorphic microsatellites detected between organisms, along with unique microsatellites specific to each genus. Furthermore, this database features unrestricted access and includes pioneer functionalities such as Advanced Search, BLAST, and JBrowse, which facilitate user-specific microsatellite search and its visualization within the database. The pSATdb holds immense potential for the research community to support diverse studies, including genetic diversity, genetic mapping, marker-assisted selection, and comparative population investigations.</p></div>\",\"PeriodicalId\":574,\"journal\":{\"name\":\"Functional & Integrative Genomics\",\"volume\":\"24 6\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional & Integrative Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10142-024-01498-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-024-01498-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

微卫星或简单序列重复序列(SSR)是通常由 1-6 个核苷酸组成的重复 DNA 序列。这些重复序列几乎存在于所有基因组中,包括叶绿体和线粒体,并广泛分布于整个基因组中。微卫星具有高度多态性,其长度可能因物种而异。因此,微卫星被广泛用作分子标记,在各种生物学研究中发挥着举足轻重的作用。然而,目前还没有关于各种细胞器基因组序列中微卫星长度变异的全面信息。因此,为了提供已挖掘的信息并探索不同物种间微卫星长度的变异,我们开发了一个名为 pSATdb 2.0(多态微卫星数据库;https://bioinfo.icgeb.res.in/psatdb/)的综合资源。该数据库是其前身 pSATdb 的升级版,提供了在细胞器基因组序列中发现的 348,894 个微卫星的频率和分布的全面信息。这些序列来自 15,681 种生物,横跨 Metazoa 和 Viridiplantae 中的 3252 个属。值得注意的是,pSATdb 2.0 是唯一一个提供生物间检测到的常见和多态微卫星信息,以及各属特有微卫星信息的数据库。此外,该数据库的访问不受限制,还包括高级搜索、BLAST 和 JBrowse 等先驱功能,便于用户在数据库中进行特定的微卫星搜索和可视化。pSATdb 在支持遗传多样性、遗传图谱、标记辅助选择和种群比较调查等各种研究方面具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pSATdb 2.0: a database of organellar common, polymorphic, and unique microsatellites

Microsatellites, or simple sequence repeats (SSRs), are repetitive DNA sequences typically composed of 1–6 nucleotides. These repetitive sequences are found in almost all genomes, including chloroplasts and mitochondria, and are widely distributed throughout the genomes. Microsatellites are highly polymorphic, and their length may differ from species to species. Consequently, microsatellites are widely used as molecular markers and play pivotal roles in various biological research. However, comprehensive information about the length variation of microsatellites in various organellar genome sequences is not available. Therefore, to provide mined information and explore the variability in the length of microsatellites across species, we developed a comprehensive resource named pSATdb 2.0 (polymorphic microSATellites database; https://bioinfo.icgeb.res.in/psatdb/). This upgraded version of its predecessor pSATdb provides comprehensive information on the frequency and distribution of 348,894 microsatellites identified in organellar genome sequences. These sequences originate from 15,681 organisms spanning 3252 genera within Metazoa and Viridiplantae. Remarkably, pSATdb 2.0 is the only database that offers information on common and polymorphic microsatellites detected between organisms, along with unique microsatellites specific to each genus. Furthermore, this database features unrestricted access and includes pioneer functionalities such as Advanced Search, BLAST, and JBrowse, which facilitate user-specific microsatellite search and its visualization within the database. The pSATdb holds immense potential for the research community to support diverse studies, including genetic diversity, genetic mapping, marker-assisted selection, and comparative population investigations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
3.40%
发文量
92
审稿时长
2 months
期刊介绍: Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?
期刊最新文献
Non-coding RNA notations, regulations and interactive resources Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development? Time-course RNA sequencing reveals high similarity in mRNAome between hepatic stellate cells activated by agalactosyl IgG and TGF-β1 BHLHE40-mediated transcriptional activation of GRIN2D in gastric cancer is involved in metabolic reprogramming pSATdb 2.0: a database of organellar common, polymorphic, and unique microsatellites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1