TC4 合金/二氧化硅界面上由反离子驱动的机械化学反应:电双层和动态离子半径

IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Tribology Letters Pub Date : 2024-11-15 DOI:10.1007/s11249-024-01939-0
Jinwei Liu, Xin Zeng, Peng Zhang, Xiang Peng, Deping Yu
{"title":"TC4 合金/二氧化硅界面上由反离子驱动的机械化学反应:电双层和动态离子半径","authors":"Jinwei Liu,&nbsp;Xin Zeng,&nbsp;Peng Zhang,&nbsp;Xiang Peng,&nbsp;Deping Yu","doi":"10.1007/s11249-024-01939-0","DOIUrl":null,"url":null,"abstract":"<div><p>Ti-6Al-4V (TC4) alloy with ultra-smooth surfaces has found extensive application in biomedical fields. Chemical mechanical polishing is a crucial method for achieving ultra-smooth surfaces, but its efficiency in polishing TC4 alloy surfaces is low. This study proposes a new approach to enhance the polishing efficiency by tuning counterions, which significantly influence both chemical corrosion and microscopic interaction forces. The mechanism involves Li<sup>+</sup>/Na<sup>+</sup>/K<sup>+</sup> regulating the action intensity at the tribological interface by altering the thickness of the electrical double layer and dynamic ionic radius. On the one hand, reducing the thickness of the electrical double layer from 1.41 to 0.46 nm can enhance the intensity of chemical reactions, and the smaller the dynamic ionic radius of the counterion, the more pronounced the chemical corrosion caused by H<sub>2</sub>O<sub>2</sub> becomes. Combining the two, the reaction products of H<sub>2</sub>O<sub>2</sub> (HO<sub>2</sub><sup>−</sup> and OOH<sup>−</sup>) can more readily react with Ti to form fragile reaction products with the help of K<sup>+</sup>. On the other hand, as the electrostatic repulsion force weakens, the SiO<sub>2</sub> particles exert a stronger mechanical force, allowing for quicker removal of the fragile reaction products. Thus, in the presence of 10 wt%H<sub>2</sub>O<sub>2</sub> and 200 mM K<sub>2</sub>SO<sub>4</sub>, a polishing efficiency of 1197 nm/min is achieved, with the <i>S</i><sub>a</sub> of 2.7 nm over a scanning area of 195.8 × 195.8 μm<sup>2</sup>, and without polishing damage layer on the substrate. The findings provide mechanistic insight for further exploring the limits of polishing performance in CMP of titanium alloys.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"73 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counterion-Driven Mechanochemical Reactions at TC4 Alloy/SiO2 Interfaces: Electrical Double Layer and Dynamic Ionic Radius\",\"authors\":\"Jinwei Liu,&nbsp;Xin Zeng,&nbsp;Peng Zhang,&nbsp;Xiang Peng,&nbsp;Deping Yu\",\"doi\":\"10.1007/s11249-024-01939-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ti-6Al-4V (TC4) alloy with ultra-smooth surfaces has found extensive application in biomedical fields. Chemical mechanical polishing is a crucial method for achieving ultra-smooth surfaces, but its efficiency in polishing TC4 alloy surfaces is low. This study proposes a new approach to enhance the polishing efficiency by tuning counterions, which significantly influence both chemical corrosion and microscopic interaction forces. The mechanism involves Li<sup>+</sup>/Na<sup>+</sup>/K<sup>+</sup> regulating the action intensity at the tribological interface by altering the thickness of the electrical double layer and dynamic ionic radius. On the one hand, reducing the thickness of the electrical double layer from 1.41 to 0.46 nm can enhance the intensity of chemical reactions, and the smaller the dynamic ionic radius of the counterion, the more pronounced the chemical corrosion caused by H<sub>2</sub>O<sub>2</sub> becomes. Combining the two, the reaction products of H<sub>2</sub>O<sub>2</sub> (HO<sub>2</sub><sup>−</sup> and OOH<sup>−</sup>) can more readily react with Ti to form fragile reaction products with the help of K<sup>+</sup>. On the other hand, as the electrostatic repulsion force weakens, the SiO<sub>2</sub> particles exert a stronger mechanical force, allowing for quicker removal of the fragile reaction products. Thus, in the presence of 10 wt%H<sub>2</sub>O<sub>2</sub> and 200 mM K<sub>2</sub>SO<sub>4</sub>, a polishing efficiency of 1197 nm/min is achieved, with the <i>S</i><sub>a</sub> of 2.7 nm over a scanning area of 195.8 × 195.8 μm<sup>2</sup>, and without polishing damage layer on the substrate. The findings provide mechanistic insight for further exploring the limits of polishing performance in CMP of titanium alloys.</p></div>\",\"PeriodicalId\":806,\"journal\":{\"name\":\"Tribology Letters\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11249-024-01939-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01939-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

具有超光滑表面的 Ti-6Al-4V (TC4) 合金已在生物医学领域得到广泛应用。化学机械抛光是实现超光滑表面的重要方法,但其在 TC4 合金表面的抛光效率较低。反离子对化学腐蚀和微观相互作用力均有显著影响,本研究提出了一种通过调节反离子来提高抛光效率的新方法。其机理是 Li+/Na+/K+ 通过改变电双层厚度和动态离子半径来调节摩擦界面的作用强度。一方面,将电双层的厚度从 1.41 nm 减小到 0.46 nm 可以增强化学反应的强度,另一方面,反离子的动态离子半径越小,H2O2 引起的化学腐蚀就越明显。两者相结合,H2O2 的反应产物(HO2- 和 OOH-)在 K+ 的帮助下更容易与 Ti 发生反应,形成脆性反应产物。另一方面,随着静电排斥力的减弱,SiO2 颗粒会产生更强的机械力,从而可以更快地清除脆弱的反应产物。因此,在 10 wt%H2O2 和 200 mM K2SO4 的存在下,抛光效率达到了 1197 nm/min,在 195.8 × 195.8 μm2 的扫描区域内,Sa 为 2.7 nm,基底上没有抛光损伤层。这些发现为进一步探索钛合金 CMP 抛光性能的极限提供了机理上的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Counterion-Driven Mechanochemical Reactions at TC4 Alloy/SiO2 Interfaces: Electrical Double Layer and Dynamic Ionic Radius

Ti-6Al-4V (TC4) alloy with ultra-smooth surfaces has found extensive application in biomedical fields. Chemical mechanical polishing is a crucial method for achieving ultra-smooth surfaces, but its efficiency in polishing TC4 alloy surfaces is low. This study proposes a new approach to enhance the polishing efficiency by tuning counterions, which significantly influence both chemical corrosion and microscopic interaction forces. The mechanism involves Li+/Na+/K+ regulating the action intensity at the tribological interface by altering the thickness of the electrical double layer and dynamic ionic radius. On the one hand, reducing the thickness of the electrical double layer from 1.41 to 0.46 nm can enhance the intensity of chemical reactions, and the smaller the dynamic ionic radius of the counterion, the more pronounced the chemical corrosion caused by H2O2 becomes. Combining the two, the reaction products of H2O2 (HO2 and OOH) can more readily react with Ti to form fragile reaction products with the help of K+. On the other hand, as the electrostatic repulsion force weakens, the SiO2 particles exert a stronger mechanical force, allowing for quicker removal of the fragile reaction products. Thus, in the presence of 10 wt%H2O2 and 200 mM K2SO4, a polishing efficiency of 1197 nm/min is achieved, with the Sa of 2.7 nm over a scanning area of 195.8 × 195.8 μm2, and without polishing damage layer on the substrate. The findings provide mechanistic insight for further exploring the limits of polishing performance in CMP of titanium alloys.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
期刊最新文献
Superlubricity of Sputtered MoS2 Film in Dry Air Enabled by Proton Irradiation Temperature Rise in Frictional Sliding Contact of Elastic–Plastic Solids with Fractal Surface Counterion-Driven Mechanochemical Reactions at TC4 Alloy/SiO2 Interfaces: Electrical Double Layer and Dynamic Ionic Radius Machine-Learning-Assisted Identification and Formulation of High-Pressure Lubricant-Piezoviscous-Response Parameters for Minimum Film Thickness Determination in Elastohydrodynamic Circular Contacts Mechanical Durability Testing and Self-Recovery of Topographically Modified Superhydrophobic Surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1