{"title":"ATBHC-YOLO:用于小物体检测的聚合变换器和双向混合卷积","authors":"Dandan Liao, Jianxun Zhang, Ye Tao, Xie Jin","doi":"10.1007/s40747-024-01652-4","DOIUrl":null,"url":null,"abstract":"<p>Object detection using UAV images is a current research focus in the field of computer vision, with frequent advancements in recent years. However, many methods are ineffective for challenging UAV images that feature uneven object scales, sparse spatial distribution, and dense occlusions. We propose a new algorithm for detecting small objects in UAV images, called ATBHC-YOLO. Firstly, the MS-CET module has been introduced to enhance the model’s focus on global sparse features in the spatial distribution of small objects. Secondly, the BHC-FB module is proposed to address the large-scale variance of small objects and enhance the perception of local features. Finally, a more appropriate loss function, WIoU, is used to penalise the quality variance of small object samples and further enhance the model’s detection accuracy. Comparison experiments on the DIOR and VEDAI datasets validate the effectiveness and robustness of the improved method. By conducting experiments on the publicly available UAV benchmark dataset Visdrone, ATBHC-YOLO outperforms the state-of-the-art method(YOLOv7) by 3.5%.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"128 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ATBHC-YOLO: aggregate transformer and bidirectional hybrid convolution for small object detection\",\"authors\":\"Dandan Liao, Jianxun Zhang, Ye Tao, Xie Jin\",\"doi\":\"10.1007/s40747-024-01652-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Object detection using UAV images is a current research focus in the field of computer vision, with frequent advancements in recent years. However, many methods are ineffective for challenging UAV images that feature uneven object scales, sparse spatial distribution, and dense occlusions. We propose a new algorithm for detecting small objects in UAV images, called ATBHC-YOLO. Firstly, the MS-CET module has been introduced to enhance the model’s focus on global sparse features in the spatial distribution of small objects. Secondly, the BHC-FB module is proposed to address the large-scale variance of small objects and enhance the perception of local features. Finally, a more appropriate loss function, WIoU, is used to penalise the quality variance of small object samples and further enhance the model’s detection accuracy. Comparison experiments on the DIOR and VEDAI datasets validate the effectiveness and robustness of the improved method. By conducting experiments on the publicly available UAV benchmark dataset Visdrone, ATBHC-YOLO outperforms the state-of-the-art method(YOLOv7) by 3.5%.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01652-4\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01652-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
ATBHC-YOLO: aggregate transformer and bidirectional hybrid convolution for small object detection
Object detection using UAV images is a current research focus in the field of computer vision, with frequent advancements in recent years. However, many methods are ineffective for challenging UAV images that feature uneven object scales, sparse spatial distribution, and dense occlusions. We propose a new algorithm for detecting small objects in UAV images, called ATBHC-YOLO. Firstly, the MS-CET module has been introduced to enhance the model’s focus on global sparse features in the spatial distribution of small objects. Secondly, the BHC-FB module is proposed to address the large-scale variance of small objects and enhance the perception of local features. Finally, a more appropriate loss function, WIoU, is used to penalise the quality variance of small object samples and further enhance the model’s detection accuracy. Comparison experiments on the DIOR and VEDAI datasets validate the effectiveness and robustness of the improved method. By conducting experiments on the publicly available UAV benchmark dataset Visdrone, ATBHC-YOLO outperforms the state-of-the-art method(YOLOv7) by 3.5%.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.