{"title":"用于生存风险预测的深度加权生存神经网络","authors":"Hui Yu, Qingyong Wang, Xiaobo Zhou, Lichuan Gu, Zihao Zhao","doi":"10.1007/s40747-024-01670-2","DOIUrl":null,"url":null,"abstract":"<p>Survival risk prediction models have become important tools for clinicians to improve cancer treatment decisions. In the medical field, using gene expression data to build deep survival neural network models significantly improves accurate survival prognosis. However, it still poses a challenge in building an efficient method to improve the accuracy of cancer-specific survival risk prediction, such as data noise problem. In order to solve the above problem, we propose a <u>d</u>iversity <u>r</u>eweighted deep survival neural <u>net</u>work method with <u>g</u>rid <u>o</u>ptimization (DRGONet) to improve the accuracy of cancer-specific survival risk prediction. Specifically, reweighting can be employed to adjust the weights assigned to each data point in the dataset based on their importance or relevance, thereby mitigating the impact of noisy or irrelevant data and improving model performance. Incorporating diversity into the goal of multiple learning models can help minimize bias and improve learning outcomes. Furthermore, hyperparameters can be optimized with grid optimization. Experimental results have demonstrated that our proposed approach has significant advantages (improved about 5%) in real-world medical scenarios, outperforming state-of-the-art comparison methods by a large margin. Our study highlights the significance of using DRGONet to overcome the limitations of building accurate survival prediction models. By implementing our technique in cancer research, we hope to reduce the suffering experienced by cancer patients and improve the effectiveness of treatment.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"4 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep weighted survival neural networks to survival risk prediction\",\"authors\":\"Hui Yu, Qingyong Wang, Xiaobo Zhou, Lichuan Gu, Zihao Zhao\",\"doi\":\"10.1007/s40747-024-01670-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Survival risk prediction models have become important tools for clinicians to improve cancer treatment decisions. In the medical field, using gene expression data to build deep survival neural network models significantly improves accurate survival prognosis. However, it still poses a challenge in building an efficient method to improve the accuracy of cancer-specific survival risk prediction, such as data noise problem. In order to solve the above problem, we propose a <u>d</u>iversity <u>r</u>eweighted deep survival neural <u>net</u>work method with <u>g</u>rid <u>o</u>ptimization (DRGONet) to improve the accuracy of cancer-specific survival risk prediction. Specifically, reweighting can be employed to adjust the weights assigned to each data point in the dataset based on their importance or relevance, thereby mitigating the impact of noisy or irrelevant data and improving model performance. Incorporating diversity into the goal of multiple learning models can help minimize bias and improve learning outcomes. Furthermore, hyperparameters can be optimized with grid optimization. Experimental results have demonstrated that our proposed approach has significant advantages (improved about 5%) in real-world medical scenarios, outperforming state-of-the-art comparison methods by a large margin. Our study highlights the significance of using DRGONet to overcome the limitations of building accurate survival prediction models. By implementing our technique in cancer research, we hope to reduce the suffering experienced by cancer patients and improve the effectiveness of treatment.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01670-2\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01670-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Deep weighted survival neural networks to survival risk prediction
Survival risk prediction models have become important tools for clinicians to improve cancer treatment decisions. In the medical field, using gene expression data to build deep survival neural network models significantly improves accurate survival prognosis. However, it still poses a challenge in building an efficient method to improve the accuracy of cancer-specific survival risk prediction, such as data noise problem. In order to solve the above problem, we propose a diversity reweighted deep survival neural network method with grid optimization (DRGONet) to improve the accuracy of cancer-specific survival risk prediction. Specifically, reweighting can be employed to adjust the weights assigned to each data point in the dataset based on their importance or relevance, thereby mitigating the impact of noisy or irrelevant data and improving model performance. Incorporating diversity into the goal of multiple learning models can help minimize bias and improve learning outcomes. Furthermore, hyperparameters can be optimized with grid optimization. Experimental results have demonstrated that our proposed approach has significant advantages (improved about 5%) in real-world medical scenarios, outperforming state-of-the-art comparison methods by a large margin. Our study highlights the significance of using DRGONet to overcome the limitations of building accurate survival prediction models. By implementing our technique in cancer research, we hope to reduce the suffering experienced by cancer patients and improve the effectiveness of treatment.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.