Luo Xu;Hongtai Zeng;Ning Lin;Yue Yang;Qinglai Guo;H. Vincent Poor
{"title":"考虑极端事件期间配电网停电的熵风险值约束优化电力流","authors":"Luo Xu;Hongtai Zeng;Ning Lin;Yue Yang;Qinglai Guo;H. Vincent Poor","doi":"10.1109/TPWRS.2024.3498435","DOIUrl":null,"url":null,"abstract":"Measuring and managing the risk of extensive distribution network outages during extreme events is critical for ensuring system-level energy balance in transmission network operations. However, existing risk measures used in stochastic optimization of power systems are computationally intractable for this problem involving large numbers of discrete random variables. Using a new coherent risk measure, Entropic Value-at-Risk (EVaR), that requires significantly less computational complexity, we propose an EVaR-constrained optimal power flow model that can quantify and manage the outage risk of extensive distribution feeders. The optimization problem with EVaR constraints on discrete random variables is equivalently reformulated as a conic programming model, which allows the problem to leverage the computational efficiency of conic solvers. The superiority of the proposed model is validated on the real-world Puerto Rico transmission grid combined with its large-scale distribution networks.","PeriodicalId":13373,"journal":{"name":"IEEE Transactions on Power Systems","volume":"40 1","pages":"1184-1187"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropic Value-at-Risk Constrained Optimal Power Flow Considering Distribution Network Outages During Extreme Events\",\"authors\":\"Luo Xu;Hongtai Zeng;Ning Lin;Yue Yang;Qinglai Guo;H. Vincent Poor\",\"doi\":\"10.1109/TPWRS.2024.3498435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measuring and managing the risk of extensive distribution network outages during extreme events is critical for ensuring system-level energy balance in transmission network operations. However, existing risk measures used in stochastic optimization of power systems are computationally intractable for this problem involving large numbers of discrete random variables. Using a new coherent risk measure, Entropic Value-at-Risk (EVaR), that requires significantly less computational complexity, we propose an EVaR-constrained optimal power flow model that can quantify and manage the outage risk of extensive distribution feeders. The optimization problem with EVaR constraints on discrete random variables is equivalently reformulated as a conic programming model, which allows the problem to leverage the computational efficiency of conic solvers. The superiority of the proposed model is validated on the real-world Puerto Rico transmission grid combined with its large-scale distribution networks.\",\"PeriodicalId\":13373,\"journal\":{\"name\":\"IEEE Transactions on Power Systems\",\"volume\":\"40 1\",\"pages\":\"1184-1187\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Power Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10752966/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10752966/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Entropic Value-at-Risk Constrained Optimal Power Flow Considering Distribution Network Outages During Extreme Events
Measuring and managing the risk of extensive distribution network outages during extreme events is critical for ensuring system-level energy balance in transmission network operations. However, existing risk measures used in stochastic optimization of power systems are computationally intractable for this problem involving large numbers of discrete random variables. Using a new coherent risk measure, Entropic Value-at-Risk (EVaR), that requires significantly less computational complexity, we propose an EVaR-constrained optimal power flow model that can quantify and manage the outage risk of extensive distribution feeders. The optimization problem with EVaR constraints on discrete random variables is equivalently reformulated as a conic programming model, which allows the problem to leverage the computational efficiency of conic solvers. The superiority of the proposed model is validated on the real-world Puerto Rico transmission grid combined with its large-scale distribution networks.
期刊介绍:
The scope of IEEE Transactions on Power Systems covers the education, analysis, operation, planning, and economics of electric generation, transmission, and distribution systems for general industrial, commercial, public, and domestic consumption, including the interaction with multi-energy carriers. The focus of this transactions is the power system from a systems viewpoint instead of components of the system. It has five (5) key areas within its scope with several technical topics within each area. These areas are: (1) Power Engineering Education, (2) Power System Analysis, Computing, and Economics, (3) Power System Dynamic Performance, (4) Power System Operations, and (5) Power System Planning and Implementation.