{"title":"利用基于氰丙基的液相色谱串联质谱技术推进靶向代谢组学研究","authors":"Wan-Rou Liao, Jiun-Tsai Lin, Pei-Chen Lin, Chin-Chen Chen, Chun-Fang Huang, Han-Min Chen, Sung-Fang Chen","doi":"10.1021/acs.analchem.4c01939","DOIUrl":null,"url":null,"abstract":"The change of metabolic pathways is recognized as the key to disease discovery prompting the development of ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS)-based quantitative platforms to explore the dynamic metabolite profiles of organisms. In this study, a liquid chromatography method based on cyanopropyl (CN) was developed. By adjusting the pH environment of the column, we achieved the elution of 51 metabolites spanning the most comprehensive set of biological pathways currently known. Offering rapid chromatography, efficient separation, and green chemistry benefits, the method encompasses nucleosides and nucleotides, the oxidative-redox metabolome, the glycolysis pathway, the pentose phosphate pathway, the purine de novo pathway, amino acids, and neurological disorder-related metabolites. The mass spectrometry was equipped with electrospray ionization in both positive and negative modes with scheduled multiple reactions monitoring. The validation of the method involved a comprehensive assessment of linearity, accuracy, precision, and matrix effect. The linear range was from 1.0 to 2000 ng mL<sup>–1</sup> with a high correlation coefficient (<i>r</i> > 0.99). The LOD ranged from 0.1 to 10 ng mL<sup>–1</sup>, and the LOQ ranged from 0.1 to 25 ng mL<sup>–1</sup>. The overall recovery ranged from 81.3% to 117.8%, with RSD < 15.1%. Subsequently, an analysis of metabolites was conducted in dSH-SY5Y neuroblastoma cells with 6-hydroxydopamine, a commonly used neurotoxin in neurodegenerative diseases. The results demonstrate that neurotoxin-induced mitochondrial damage significantly altered related analytes, corroborating previous estimates and validating the feasibility and reliability of the bioanalytical platform.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Targeted Metabolomics Using Cyanopropyl-Based Liquid Chromatography Tandem Mass Spectrometry\",\"authors\":\"Wan-Rou Liao, Jiun-Tsai Lin, Pei-Chen Lin, Chin-Chen Chen, Chun-Fang Huang, Han-Min Chen, Sung-Fang Chen\",\"doi\":\"10.1021/acs.analchem.4c01939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The change of metabolic pathways is recognized as the key to disease discovery prompting the development of ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS)-based quantitative platforms to explore the dynamic metabolite profiles of organisms. In this study, a liquid chromatography method based on cyanopropyl (CN) was developed. By adjusting the pH environment of the column, we achieved the elution of 51 metabolites spanning the most comprehensive set of biological pathways currently known. Offering rapid chromatography, efficient separation, and green chemistry benefits, the method encompasses nucleosides and nucleotides, the oxidative-redox metabolome, the glycolysis pathway, the pentose phosphate pathway, the purine de novo pathway, amino acids, and neurological disorder-related metabolites. The mass spectrometry was equipped with electrospray ionization in both positive and negative modes with scheduled multiple reactions monitoring. The validation of the method involved a comprehensive assessment of linearity, accuracy, precision, and matrix effect. The linear range was from 1.0 to 2000 ng mL<sup>–1</sup> with a high correlation coefficient (<i>r</i> > 0.99). The LOD ranged from 0.1 to 10 ng mL<sup>–1</sup>, and the LOQ ranged from 0.1 to 25 ng mL<sup>–1</sup>. The overall recovery ranged from 81.3% to 117.8%, with RSD < 15.1%. Subsequently, an analysis of metabolites was conducted in dSH-SY5Y neuroblastoma cells with 6-hydroxydopamine, a commonly used neurotoxin in neurodegenerative diseases. The results demonstrate that neurotoxin-induced mitochondrial damage significantly altered related analytes, corroborating previous estimates and validating the feasibility and reliability of the bioanalytical platform.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c01939\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c01939","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Advancing Targeted Metabolomics Using Cyanopropyl-Based Liquid Chromatography Tandem Mass Spectrometry
The change of metabolic pathways is recognized as the key to disease discovery prompting the development of ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS)-based quantitative platforms to explore the dynamic metabolite profiles of organisms. In this study, a liquid chromatography method based on cyanopropyl (CN) was developed. By adjusting the pH environment of the column, we achieved the elution of 51 metabolites spanning the most comprehensive set of biological pathways currently known. Offering rapid chromatography, efficient separation, and green chemistry benefits, the method encompasses nucleosides and nucleotides, the oxidative-redox metabolome, the glycolysis pathway, the pentose phosphate pathway, the purine de novo pathway, amino acids, and neurological disorder-related metabolites. The mass spectrometry was equipped with electrospray ionization in both positive and negative modes with scheduled multiple reactions monitoring. The validation of the method involved a comprehensive assessment of linearity, accuracy, precision, and matrix effect. The linear range was from 1.0 to 2000 ng mL–1 with a high correlation coefficient (r > 0.99). The LOD ranged from 0.1 to 10 ng mL–1, and the LOQ ranged from 0.1 to 25 ng mL–1. The overall recovery ranged from 81.3% to 117.8%, with RSD < 15.1%. Subsequently, an analysis of metabolites was conducted in dSH-SY5Y neuroblastoma cells with 6-hydroxydopamine, a commonly used neurotoxin in neurodegenerative diseases. The results demonstrate that neurotoxin-induced mitochondrial damage significantly altered related analytes, corroborating previous estimates and validating the feasibility and reliability of the bioanalytical platform.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.